

EE112 - Fall 2016 Analog Integrated Circuits I

Prof. Haoyu Wang wanghy@shanghaitech.edu.cn 5210 Research Bldg.

© Power Electronics And Renewable Energies Lab

Review: Ideal Op-Amp

- Infinite input impedance
 - » No current goes in, virtual open circuit (虚断)
- Zero output impedance
- Infinite open-loop gain, A
 - » Virtual short circuit between the inverting and non-inverting input ports (虚短)
- Infinite bandwidth
- Infinite common-mode rejection
 - » Common mode rejection ratio (CMRR)

ShanghaiTech University

1

Electrical Characteristics of a Real Op-Amp

			- (1)	µA741C			μA741M			
	PARAMETER	TEST CONDITIONS	IV.A.	MIN	TYP	MAX	MIN	TYP	MAX	UNIT
VIO	Input offset voltage	V ₀ = 0	25°C		1	6		1	5	mV
			Full range			7.5		±15	6	
∆V _{IO(adj)}	Offset voltage adjust range	V ₀ = 0	25°C		±15			20	200	mV
	Input offset current	V ₀ = 0	25°C		20	200			500	nA
NO			Full range			300			500	
I _{IB}	Input bias current	V ₀ = 0	25°C		80	500		80	500	nA
			Full range			800			1500	
	0		25°C	±12	±13		±12	±13		v
VICR	Common-mode input voltage range		Full range	±12			±12			
	Maximum peak output voltage swing	R _L = 10 kΩ	25°C	±12	±14		±12	±14		v
		R _L ≥ 10 kΩ	Full range	±12			±12			
VOM		R _L = 2 kΩ	25°C	±10			±10	±13		
		R _L ≥ 2kΩ	Full range	±10			±10			
	Large-signal differential voltage amplification	R _L ≥ 2kΩ	25°C	20	200		50	200		V/mV
Avo		V ₀ = ±10 V	Full range	15			25			
r,	Input resistance		25°C	0.3	2		0.3	2		MΩ
ro	Output resistance	V ₀ = 0, See ⁽²⁾	25°C		75			75		Ω
Ci	Input capacitance		25°C		1.4			1.4		pF
CMRR	Common-mode rejection ratio	V _{IC} = V _{ICRmin}	25°C	70	90		70	90		dB
			Full range	70			70			
k _{svs}	Supply voltage sensitivity $(\Delta V_{10}\!/\!\Delta V_{CC})$	V _{CC} = ±9 V to ±15 V	25°C		30	150		30	150	μV/V
			Full range			150			150	
los	Short-circuit output current		25°C		±25	±40		±25	±40	mA
lcc	Supply current	V _O = 0, No load	25°C		1.7	2.8		1.7	2.8	mA
			Full range			3.3			3.3	
PD	Total power dissipation	V ₀ = 0, No load	25°C		50	85		50	85	mW
			Full range			100			100	

7.3 Electrical Characteristics µA741C, µA741M

© Power Electronics And Renewable Energies Lab

ShanghaiTech University

Switching Characteristics of a Real Op-Amp

over operating nee-an temperature range, $v_{CC\pm} = \pm 15$ v, $r_A = 25$ C (unless otherwise noted)										
	DADAMETED	TEST CONDITIONS	μA741C			μ				
PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	UNIT	
tr	Rise time	V_I = 20 mV, R_L = 2 k Ω , C_L = 100 pF, See Figure 1		0.3			0.3		μs	
	Overshoot factor			5%			5%		_	
SR	Slew rate at unity gain	$V_{I} = 10 V, R_{L} = 2 k\Omega,$ $C_{L} = 100 pF, See Figure 1$		0.5			0.5		V/µs	

over operating free-air temperature range, $V_{CC+} = \pm 15 \text{ V}$, $T_A = 25^{\circ}\text{C}$ (unless otherwise noted)

Imperfections in Practical Op-Amps

- Finite open-loop gain ($A_o < \infty$)
- Finite input resistance ($R_i < \infty$)
- Non-zero output resistance (R_o > 0)
- Finite bandwidth
- Offset (偏移) voltage
- Input bias and offset currents

© Power Electronics And Renewable Energies Lab

ShanghaiTech University

PE▲RI

Offset (偏移) Voltage

Figure 2.28 Circuit model for an op amp with input offset voltage V_{OS} .

Figure E2.21 Transfer characteristic of an op amp with $V_{OS} = 5$ mV.

© Power Electronics And Renewable Energies Lab

Trimming of Offset Voltage

V_{OS} in a closed-loop amplifier. © Power Electronics And Renewable Energies Lab

Figure 2.30 The output dc offset voltage of an op amp can be trimmed to zero by connecting a potentiometer to the two offset-nulling terminals. The wiper of the potentiometer is connected to the negative supply of the op amp.

ShanghaiTech University

Input Bias Currents and Offset Currents

Figure 2.32 The op-amp input bias currents represented by two current sources I_{B1} and I_{B2} .

- The input terminals need to be supplied with bias currents, *I*_{B1} and *I*_{B2}, for Op Amp to function. (This will become clear towards the end of the semester).
- Input bias current: $I_B = (I_{B1} + I_{B2})/2$
- Input offset current: $I_{OS} = |I_{B1} I_{B2}|$
- Typical bipolar transistor Op amps:

» I_{os} ~ 10 nA

 $V_0 = I_{B1}R_2$ _

•
$$V_0 = I_{B1}R_2 \approx I_BR_2$$

© Power Electronics And Renewable Energies Lab

input bias currents.

Figure 2.33 Analysis of the closed-loop amplifier, taking into account the

ShanghaiTech University

- Reducing the Effect of Input Bias Currents

Vo =

Continued

Figure 2.34 Reducing the effect of the input bias currents by introducing a resistor R_3 .

© Power Electronics And Renewable Energies Lab

ShanghaiTech University

Figure 2.39 Open-loop gain of a typical general-purpose, internally compensated op amp.

Single pole response with a dominant pole at ω_b

© Power Electronics And Renewable Energies Lab

Frequency Response of Closed-Loop Op Amp (Inverting Amplifier Example)

 Steps to find frequency response of closed-loop amp

© Power Electronics And Renewable Energies Lab

Continued

ShanghaiTech University

© Power Electronics And Renewable Energies Lab

Frequency Response of Closed-Loop (Noninverting Amplifier Example)

Figure 2.12 The noninverting configuration.

© Power Electronics And Renewable Energies Lab

ShanghaiTech University

Continued

© Power Electronics And Renewable Energies Lab

Output Saturation

- The output voltage swing is limited by
 - » 1. Saturation voltage (usually a volt or two lower than power supply voltage)
 - » 2. Maximum output current (in case of small load resistance)
- Output waveform appears to be "clipped" when either condition happens

Figure 2.42 (a) A noninverting amplifier with a nominal gain of 10 V/V designed using an op amp that saturates at ± 13 -V output voltage and has ± 20 -mA output current limits. (b) When the input sine wave has a peak of 1.5 V, the output is clipped off at $\pm 13 \text{ V}$.

© Power Electronics And Renewable Energies Lab

ShanghaiTech University

ŠPE∕ARI

Slew Rate (压摆率)

 Amplifier output is limited by "slew rate": maximum rate of change possible at output

$$SR = \frac{dv_o}{dt}\Big|_{max}$$

- SR is specified in datasheet in V/µs.
- Note: SR limit is different from bandwidth limit:
 - » Limited bandwidth is a linear phenomenon, it does not result in a change the shape of an input sinusoid
 - » SR limitation can cause nonlinear distortion to input sinusoidal signal

Figure 2.43 (a) Unity-gain follower. (b) Input step waveform. (c) Linearly rising output waveform obtained when the amplifier is slew-rate limited. (d) Exponentially rising output waveform obtained when V is sufficiently small so that the initial slope (ω, V) is smaller than or equal to SR.

© Power Electronics And Renewable Energies Lab

ShanghaiTech University

Comparison of Slew Rate and Bandwidth Limits

For step function input waveform, both SR and bandwidth limits cause the output to rise with a finite slope, but there is an important difference:

© Power Electronics And Renewable Energies Lab

Full-Power Bandwidth

Summary

- Open loop gain
- Input impedance
- Output impedance
- Input offset & Bias
- CMRR
- Saturation
- Unity-gain bandwidth
- Slew rate
- Full-power bandwidth

