## ShanghaiTech University School of Information Science and Technology

## **EE112** Analog Integrated Circuits I

## Homework 6

## Due: Nov 17<sup>th</sup> before lecture

Read the chapter 7.

- 1. Various measurements are made on an NMOS amplifier for which the drain resistor  $R_D$  is 20 k $\Omega$ . First, dc measurements show the voltage across the drain resistor,  $V_{R_D}$ , to be 1.5 V and the gate-to-source bias voltage to be 0.7 V. Then, ac measurements with small signals show the voltage gain to be -10 V/V. What is the value of  $V_t$  for this transistor? If the process transconductance parameter  $k_n$  is 200  $\mu$ A/V<sup>2</sup>, what is the MOSFET's W/L?
- 2. For the amplifier circuit in Fig. 1 with  $V_{CC} = +5$  V and  $R_C = 1$  k $\Omega$ , find  $V_{CE}$  and the voltage gain at the following dc collector bias currents: 0.5 mA, 1 mA, 2.5 mA, 4 mA, and 4.5 mA. For each, give the maximum possible positive- and negative-output signal swing as determined by the need to keep the transistor in the active region. Present your results in a table.



- 3. Consider the FET amplifier of Fig. 2 for the case  $V_t = 0.4$  V,  $k_n = 5$  mA/V<sup>2</sup>,  $V_{GS} = 0.6$  V,  $V_{DD} = 1.8$  V, and  $R_D = 10$  k $\Omega$ .
  - (a) Find the dc quantities  $I_D$  and  $V_{DS}$ .
  - (b) Calculate the value of  $g_m$  at the bias point.
  - (c) Calculate the value of the voltage gain.

(d) If the MOSFET has  $\lambda = 0.1 \text{ V}^{-1}$ , find  $r_o$  at the bias point and calculate the voltage gain.



4. For the NMOS amplifier in Fig. 3, replace the transistor with its T equivalent circuit, assuming  $\lambda = 0$ . Derive expressions for the voltage gains  $v_s/v_i$  and  $v_d/v_i$ .



Figure 3