ShanghaiTech University School of Information Science and Technology

EE112 Analog Integrated Circuits I

Homework 8

Due: Dec. 13th Before Lecture

Read the chapter 8.

1. For the current-steering circuit of Fig. 1, find I_O in terms of I_{REF} and device W/L ratios.

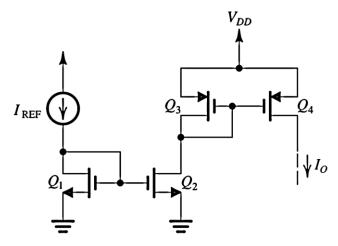


Figure 1

2. For the circuit in Fig. 2, let $|V_{BE}| = 0.7$ V and $\beta = \infty$. Find I, V_1 , V_2 , V_3 , V_4 , and V_5 for (a) R = 10 k Ω and (b) R = 100 k Ω .

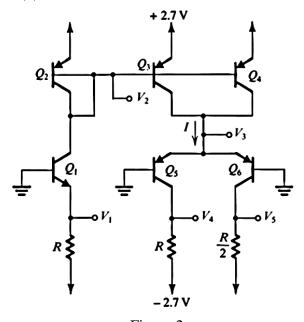


Figure 2

3. Fig.3 shows an IC MOS amplifier formed by cascading two common-source stages. Assuming that $V_{An} = |V_{Ap}|$ and that the biasing current sources have output resistances equal to those of Q_1 and Q_2 , find an expression for the overall voltage gain in terms of g_m and r_o of Q_1 and Q_2 . If Q_1 and Q_2 are to be operated at equal overdrive voltages, $|V_{OV}|$, find the required value of $|V_{OV}|$ if $|V_A| = 5$ V and the gain required is 400 V/V.

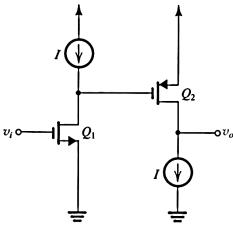


Figure 3

- 4. In the common-gate amplifier circuit of Fig. 4, Q_2 and Q_3 are matched. k_n' (W/L)_n = k_p' (W/L)_p = 4 mA/V², and all transistors have $|V_t|$ = 0.8 V and $|V_A|$ = 20 V. The signal v_{sig} is a small sinusoidal signal with no dc component.
- (a) Neglecting the effect of V_A , find the dc drain current of Q_1 and the required value of V_{BIAS} .
 - (b) Find the values of g_{m1} and r_o for all transistors.
 - (c) Find the value of R_{in} .
 - (d) Find the value of R_{out} .
 - (e) Calculate the voltage gains v_o/v_i and v_o/v_{sig} .
- (f) How large can v_{sig} be (peak-to-peak) while maintaining saturation-mode operation for Q_1 and Q_2 ?

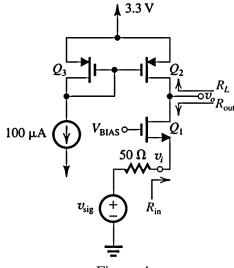


Figure 4

5. In this problem, we will explore the difference between using a BJT as cascode device and a MOSFET as cascode device. Refer to Fig. 5. Given the following data, calculate G_m , R_o , and A_{vo} for the circuits (a) and (b): $I = 100 \mu A$, $\beta = 125$, $\mu_n C_{ox} = 400 \mu A/V^2$, W/L = 25, $V_A = 1.8 \text{ V}$.

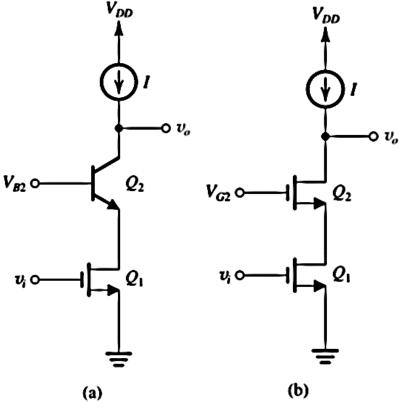
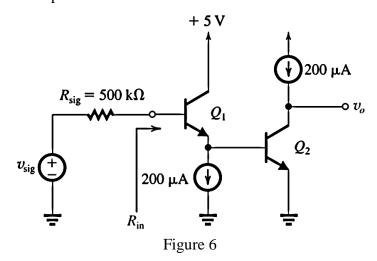



Figure 5

- 6. The transistors in the circuit of Fig. 6 have $\beta = 100$ and $V_A = 50$ V.
 - (a) Find R_{in} and the overall voltage gain.
 - (b) What is the effect of increasing the bias currents by a factor of 10 on R_{in} , G_{ν} , and the power dissipation?

