7.6. The canonical circuit model

All PWM CCM dc-dc converters perform the same basic functions:

- **Transformation** of voltage and current levels, ideally with 100% efficiency
- Low-pass **filtering** of waveforms
- **Control** of waveforms by variation of duty cycle

Hence, we expect their equivalent circuit models to be qualitatively similar.

Canonical model:

- A **standard form** of equivalent circuit model, which represents the above physical properties
- Plug in parameter values for a given specific converter
7.6.1. Development of the canonical circuit model

1. **Transformation of dc voltage and current levels**
 - modeled as in Chapter 3 with ideal dc transformer
 - effective turns ratio $M(D)$
 - can refine dc model by addition of effective loss elements, as in Chapter 3

![Converter model diagram](image)
Steps in the development of the canonical circuit model

2. Ac variations in $v_g(t)$ induce ac variations in $v(t)$
 - these variations are also transformed by the conversion ratio $M(D)$

\[\text{Control input} \quad \text{Power input} \quad \text{Load} \]

\[V_g + \hat{v}_g(s) \quad 1 : M(D) \quad V + \hat{v}(s) \quad R \]

\[D \]

e.g. 100 Hz variations
Steps in the development of the canonical circuit model

3. **Converter must contain an effective low-pass filter characteristic**
 - necessary to filter switching ripple
 - also filters ac variations
 - effective filter elements may not coincide with actual element values, but can also depend on operating point
Steps in the development of the canonical circuit model

4. **Control input variations also induce ac variations in converter waveforms**
 - **Independent sources represent effects of variations in duty cycle**
 - **Can push all sources to input side as shown. Sources may then become frequency-dependent**
Transfer functions predicted by canonical model

\[V_g + \hat{v}_g(s) \]

\[j(s) \hat{d}(s) \]

\[e(s) \hat{d}(s) \]

\[1 : M(D) \]

\[H_e(s) \]

\[Z_{e}(s) \]

\[Z_{eo}(s) \]

\[+ \]

\[- \]

\[V + \hat{v}(s) \]

\[R \]

\[D + \hat{d}(s) \]

\[\text{Power input} \]

\[\text{Control input} \]

\[\text{Load} \]

Line-to-output transfer function:

\[G_{vg}(s) = \frac{\hat{v}(s)}{\hat{v}_g(s)} = M(D) \cdot H_e(s) \]

Control-to-output transfer function:

\[G_{vd}(s) = \frac{\hat{v}(s)}{\hat{d}(s)} = e(s) \cdot M(D) \cdot H_e(s) \]
7.6.2. Example: manipulation of the buck-boost converter model into canonical form

Small-signal ac model of the buck-boost converter

- Push independent sources to input side of transformers
- Push inductor to output side of transformers
- Combine transformers
Step 1

Push voltage source through 1:D transformer
Move current source through D’:1 transformer
How to move the current source past the inductor:
Break ground connection of current source, and connect to node A instead.
Connect an identical current source from node A to ground, so that the node equations are unchanged.
Step 3

The parallel-connected current source and inductor can now be replaced by a Thevenin-equivalent network:
Step 4

Now push current source through 1:D transformer.

Push current source past voltage source, again by:

- Breaking ground connection of current source, and connecting to node B instead.
- Connecting an identical current source from node B to ground, so that the node equations are unchanged.

Note that the resulting parallel-connected voltage and current sources are equivalent to a single voltage source.
Step 5: final result

Push voltage source through 1:D transformer, and combine with existing input-side transformer.

Combine series-connected transformers.

\[
\begin{align*}
\left(\frac{V_g - V}{D} - s \frac{LI}{DD'} \right) \hat{a}(s)
\end{align*}
\]
Coefficient of control-input voltage generator

Voltage source coefficient is:

\[e(s) = \frac{V_g - V}{D} - \frac{s LI}{DD'} \]

Simplification, using dc relations, leads to

\[e(s) = -\frac{V}{D^2} \left(1 - \frac{s DL}{D^2 R} \right) \]

Pushing the sources past the inductor causes the generator to become frequency-dependent.
7.6.3. Canonical circuit parameters for some common converters

![Circuit Diagram]

Table 7.1. Canonical model parameters for the ideal buck, boost, and buck-boost converters

<table>
<thead>
<tr>
<th>Converter</th>
<th>$M(D)$</th>
<th>L_e</th>
<th>$e(s)$</th>
<th>$j(s)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Buck</td>
<td>D</td>
<td>L</td>
<td>$\frac{V}{D^2}$</td>
<td>$\frac{V}{R}$</td>
</tr>
<tr>
<td>Boost</td>
<td>$\frac{1}{D'}$</td>
<td>$\frac{L}{D'^2}$</td>
<td>$V \left(1 - \frac{sL}{D'^2R} \right)$</td>
<td>$\frac{V}{D'^2R}$</td>
</tr>
<tr>
<td>Buck-boost</td>
<td>$-\frac{D}{D'}$</td>
<td>$\frac{L}{D'^2}$</td>
<td>$-\frac{V}{D^2} \left(1 - \frac{sDL}{D'^2R} \right)$</td>
<td>$-\frac{V}{D'^2R}$</td>
</tr>
</tbody>
</table>

Fundamentals of Power Electronics
Chapter 7: AC equivalent circuit modeling
7.7. Modeling the pulse-width modulator

Pulse-width modulator converts voltage signal $v_c(t)$ into duty cycle signal $d(t)$. What is the relation between $v_c(t)$ and $d(t)$?
A simple pulse-width modulator

- **Sawtooth wave generator**
 - $v_{saw}(t)$

- **Comparator**
 - $\delta(t)$
 - $v_c(t)$

- **PWM waveform**
 - 0 to V_M

Graph:
- $v_{saw}(t)$
- $v_c(t)$
- $\delta(t)$
- 0, dT_s, T_s, $2T_s$
Equation of pulse-width modulator

For a linear sawtooth waveform:

\[d(t) = \frac{v_c(t)}{V_M} \quad \text{for } 0 \leq v_c(t) \leq V_M \]

So \(d(t) \) is a linear function of \(v_c(t) \).
Perturbed equation of pulse-width modulator

PWM equation:
\[d(t) = \frac{v_c(t)}{V_M} \quad \text{for} \ 0 \leq v_c(t) \leq V_M \]

Perturb:
\[v_c(t) = V_c + \hat{v}_c(t) \]
\[d(t) = D + \hat{d}(t) \]

Result:
\[D + \hat{d}(t) = \frac{V_c + \hat{v}_c(t)}{V_M} \]

Block diagram:

Dc and ac relations:
\[D = \frac{V_c}{V_M} \]
\[\hat{d}(t) = \frac{\hat{v}_c(t)}{V_M} \]
Sampling in the pulse-width modulator

The input voltage is a continuous function of time, but there can be only one discrete value of the duty cycle for each switching period.

Therefore, the pulse-width modulator samples the control waveform, with sampling rate equal to the switching frequency.

In practice, this limits the useful frequencies of ac variations to values much less than the switching frequency. Control system bandwidth must be sufficiently less than the Nyquist rate $f_s/2$. Models that do not account for sampling are accurate only at frequencies much less than $f_s/2$.