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Abstract—As a DC-DC converter, an inductive power transfer
(IPT) system requires a feedback control to stabilize the output.
An accurate and simple small signal model is important for IPT
systems to evaluate the control performance. In the past years,
the extended describing function (EDF) is powerful to address
the modeling issue for resonant converter. However, the high-
order resonant tank of IPT would lead to a complicated model
if EDF is directly applied. In order to simplify the model, this
paper explores a circuit-based method to reduce the order for
both series and parallel resonant circuits. An example LCC-C

compensated system is used to explain the concept. This genera

simplification can be extended for any other high-order IPT
systems.

Index Terms—Inductive power transfer, equivalent circuit
model, extended describing function, reduce order model

I. INTRODUCTION

Inductive power transfer (IPT) can deliver power from a
coil to another coil without any contact. This kind of power
transfer mechanism is convenient and safe [1]-[3]. Recently,
IPT has been widely used for charging various devices, such as
LED, medical implants, electric vehicles and cell phones [4]-
[6]. This new power transfer mechanism has the capacity to
revolutionize many manufacturing processes.

In order to boost the power transfer ability and mini-
mize the voltampere (VA) rating, four basic compensation-
s (series-series, parallel-series, series-parallel, and parallel-
parallel) were proposed [7], [8]. Recently, many high-order
compensations have been proposed for constant voltage or
constant current applications [9]. These high-order compen-
sated IPT systems can improve the controllability and design
freedom. For example, a two-stage fast charger is proposed
in [10] to give a constant output voltage with the help of a
front-end regulation stage. Similar concept could be also found
in EV chargers, where the front-end PFC stage is used for final
regulation [11]. Using such control scheme, it is important to
derive small-signal transfer function for the IPT stage, and then
the controller in the primary side can be designed accordingly
to improve the system dynamics.

The IPT system is actually a high-order resonant converter,
and thus the modeling approach for resonant converter can be
naturally introduced to the IPT system. Average concept [12]
is a popular modeling approach for pulse width modulation
(PWM) converter. This concept is simple and mature for
controller design [13]. However, in resonant converters, the
average of some state variables are zero, which makes average
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model invalid. Another challenge for modeling is that the
resonant converter contains nonlinear parts such as inverter and
rectifier. These nonlinear parts increase modeling difficulty.
In order to overcome these challenges, some methods are
presented, i.e., generalized state space averaging (GSSA) [14],
extended describing function (EDF) [15] and data sampling
model [16], [17].

These methods can be easy to extend to IPT systems [18]-
[23]. However, in the IPT system, there are more resonant
elements, the order of model is higher than resonant converter.
Even the simplest IPT system (SS), is a 9th-order system [18].
Therefore, besides the model derivation, the model simplifica-
tion is another challenging issue Numerical method to reduce
the system’s order is a simple way [21], [22]. In [21], the 11th-
order system is reduced to a 2nd-order system by numerical
calculation. However, this way requires large calculation and
loses the physical insight. In [24], the author reduces the order
of resonant converter by simplification of resonant capacitors.
This method can also extend to IPT systems.

This paper is devoted to the small-signal model simplifi-
cation for high-order IPT systems. The LCC-C compensated
IPT system severs as an example to discuss the small signal
model. In this paper, a small signal model from input to
output is derived based on extended describing function. This
method uses the fundamental harmonic approximation, and is
popular for modeling. In order to gain more physical insight,
the equivalent circuit of small signal model for elements in
the IPT system is derived. The model for whole system is 13
order without any simplification. This model is too difficult to
analyses. Based on the method proposed in [24], the order of
small-signal circuit model is reduced by well dealing with the
series and parallel resonance. The origin 13th-order system is
simplified to a 7th-order one. The equivalent circuit model is
derived for this IPT system. Based on this model the input-
output gain, input impedance and output impedance will be
derived. Finally, simulations are carried out for verification.

II. EQUIVALENT CIRCUIT MODEL
A. Static-State Characteristics

An unregulated IPT system works as a dc transformer
(DCX) as shown in Fig. 1. This IPT stage consists of an
inverter, LCC-C compensation network and a rectifier. L1, C1,
and C), forms the transmitting compensation(TX), and C; is
serially connected to the receiving (RX) coil. The coupler is
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Fig. 1. A IPT system using LCC-C compensation.

represented by its T-model with three inductors. This LCC-
C compensation can easily achieve load-independent output
voltage under the following resonance equations:

1 1
J ' JwsCq IWsp ]wscp (1)
. .
jwe L =0
Justs ¥ 500G

In (1), ws is the angular switching frequency. Under this
condition, the output voltage gain G4, is:
Vo M

Gpo= Lo =2 2
il )

In [10], a front-end stage controls v;, to regulate wv,.
Therefore, the small signal transfer function from input and
output should be considered and is selected as an example
to demonstrate the order-reduction method. The whole system
consists of the inverter, the resonant tank, and the rectifier. The
first step is to model each part by the EDF method.

B. Equivalent Circuit Model of Inverter and Rectifier

For the inverter, the input is approximated as a dc compo-
nent, while the output using fundamental harmonic approxi-
mation as below:

3

va ~ Vapsinwt
iap ~ Iapsinwgt
Where V4p and I4p mean the magnitude of the voltage

and current. V45 and [4p can be derived by Fourier decom-
position:

4
VAB = *‘/zn
T . 4)
Iag = EIM
And then V4 is decomposed as:
Vag = Vap + 9as, )

where V45 means the average of Vap, and 94 p is the small-
signal perturbation. Similarly, it also has

Based on (3)-(6), the small-signal voltage gain is easily derived
as:

DA = —Din. )
i

So, the small signal model for the inverter is shown in Fig.2

Fig. 2. Small signal model for the inverter.

The modeling concept for the rectifier is the same as
the inverter. The voltage for input of rectifier vop can be
approximated the fundamental harmonic, and the output is
approximated as DC component. Due to the phase difference
¢ between vap and vop, the voltage and current of rectifier
have to be separated to the sine part and cosine part:

®

vep = Vep,ssinwst + Vop s coswst
t = Icp,ssinwst + Iop e coswst
The phase difference ¢ is dependent on the current Iop:

tang = % . So, the orthogonal components in (8) can
be derived below:

2 [T 4 Alep s
Vep.s = f/ V, sinwstdwgt = 205y, _ Aensy,

T m mlcp

2 [T 4si Alepe.,
Vep,s = 7/ V, cos wstdwst = 51n¢VO = 2¢D, Vs,

T J ™ wlcp

C))
Since the rectifier output current i, = |icp|, its magnitude

is calculated by

1 27 . 2 2 2
I, = 7/ |ICD smwst|dw5t: 7\/ICD,S +ICD,c .
2m Jo T

(10)
Considering the perturbations, all the above state variables are
defined as

Icps=Icps+ %cp,s
Icpe=Icpe+icp,e
Vep,s = Veps + 9cp.s (1D
Vep,e = Vop,e + 9¢p,e
Vo =V, + 0,
The small signal model can be derived by First order Taylor
expansion for (9) and (10):
Ucp,s = RS:L:CD,S + Hrs%CD,c + 2H. 9,
bcp,e = Hycicp,s + Reicp,c + 2H 0, (12)
iy = HSQCD,S + Hc%CD,C

The detailed derivation is given in [15], and the equivalent

Iap =1Iap+ias. (6) model is shown in Fig.3. This small signal model has both
L = Lin + iin sine part and cosine part.
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Fig. 3. Small signal model for rectifier.

C. Equivalent Circuit Model of the Resonant Tank

The resonant tank includes the coupling coils and com-
pensation networks. In this paper, T-model is used to repre-
sent coupling coils by three separate inductors, and then the
model only needs to deal with inductors and capacitors. For
any inductor current (i) or capacitor Voltage (vc) assume
in(t) = Ipedst, vo(t) = Veelwst, I = Iy + iy , and
Ve = Vo + 0¢ , and then the general small signal model
are derived as

dig,
U, = L=t +ngLZL
dt ) (13)

zc = C’dd—t + jwsCoe

The small signal model for inductor and capacitor is given
in Fig. 4. There is a complex term in the original circuit, i.e.,
jws L, which fails the circuit simulation. Meanwhile, the model
of the rectifier also includes two orthogonal parts and cannot
be directly connected to the resonant tank. So, the model are
separated to sine and cosine part, i.e, i L= i L+ JL L, and
¢ = ¢,s+j0c,c. Based on this decomposmon (13) is written
as (14). So, the model is separated into orthogonal parts in
Fig. 4 :

d’iL,S

f)L s = L — wsLiL ,8
dZL c
ULC_L +0J5LZLC (14)
—c“cs %
ZC‘,s - dt wsLVC s
A dbe o
1C,c = c UC + wsCUC c

(a) Small signal model for inductor.

(b) Small signal model for capacitor .

Fig. 4. Small signal model for inductor and capacitor using EDF.

ITII. REDUCED-ORDER SYSTEM MODEL

Based on the derivation above, the original small-signal
model of the LCC-C compensated system can be obtained,
which is a 13th-order circuit. This system is complexed and
hard to analyze. Therefore, a proper order-reduction method
is preferred to simplify the model.

In this paper, a general method is proposed to reduce
the order. According to [24], an approximation can be used
to simplify the resonant capacitor branch in resonant tank.
When the perturbation frequency (s) is much smaller than
the switching frequency ws, the capacitor in parallel with
the complex impedance is simplified as an equivalent series
branch. The mathematical analysis is shown in (15). From the
circuit point of view, the proposed approximation is shown in
Fig. 5.

o 1 142

o SOFIC e (14 2%) (15)
i1 LS

= jwsC jwsC  wgC

Fig. 5. Simplification of the capacitor.

In Fig. 1, there are 7 components in the resonant tank, i.e.,
four inductors and three capacitors. Each capacitor is replaced
by its equivalent inductor for the model perspective [refer to
Fig. 5]. As shown in Fig. 6 (a), where a capacitor is represented
as an inductor in a series resonant tank. Two inductors can be
merged into a single inductor to reduce the order. For a parallel
resonant tank in Fig 6 (b), the order of the model is also
reduced because the term 1/(jwsC) becomes in series with
the resonant components in the equivalent circuit. Finally, all
the series and parallel resonances will be treated in the same
way and the overall order of the whole system is significantly
reduced.

By separating the model of each resonant components to
sine part and cosine part, the final model is generated as shown
in Fig. 7. In the resonant tank, there are 6 independent loops,
so the order for this resonant tank is 6. Combing with the
rectifier, the final model is a 7th-order system. Based on this
simplified equivalent circuit, the original 13th-order system
is reduced to a 7th-order one. By using Kirchhoff’s law, the
state variable in Fig.7 can be expressed as: Ar = y. The
parameter of equations are shown in (16) - (19). By solving
these equations, transfer function from input-output: G..(s) =
U0/ 0in, can be derive. This model can also be used to derive
the input impedance Z;,,(s) and output impedance Z,,(s):
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Fig. 7. Equivalent small-signal circuit model using proposed order-reduction method.

(a) Series resonant tank.

(b) Parallel resonant tank.

Fig. 6. Resonant tank simplifications.

IV. MODEL VERIFICATION WITH SIMULATION

In this section, the simulation for small signal model is
obtained by SIMPLIS to verify the model accuracy. The circuit
parameters are shown in Tab.l. The input-to-output transfer
function is measured in the simulation as shown in Fig. 8 [i.e.,
the blue curve]. The red dot line gives the result using reduced-
order model. This model is accurate up to 1/3 switching
frequency.

TABLE 1
CIRCUIT PARAMETERS.

L, L, L1 M C
61 0 | 12 H | 55 H | 108 H| 10 F
C1 [ C, R fs
461 nF | 4221 oF | 21.100F | 5 T MHz

The comparison between simulation and model for input
impedance Z;,(s) is shown in Fig. 9, both magntitude and
phase are accurate up to 1/5 switch frequency.

The output impedance Z,,:(s) for this IPT system is also
verified. The comparison between simulation and model is
shown in Fig. 10, the magnitude of the output impedance is
accurate almost at any frequency, while the phase of output
impedance is only accurate at high frequency.

The results from Fig. 8 to Fig. 10 show that the accuracy
of this reduced model is high enough to build the front-end
controller.

——— Simulation
— — — . Cal. (model)

(@)

Simulation
— — = Cal. (model)

(b)

Fig. 8. Transfer function (G4c) comparison between reduced-order-model-
based calculation and SIMPLIS-based simulation.
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Fig. 10. Output impedance (Z,y+(S)) comparison between model-based

Fig. 9. Input impedance (Z;,(S)) comparison between model-based calcu-
lation and SIMPLIS-based simulation.

V. CONCLUSION

In this paper, the small signal model for LCC-C IPT
system is derived based the on extended describing function.
A general method is proposed to reduce the order of system.
The example LCC-C IPT system with 13 orders is simplified
to a 7th-order system. The proposed method has more physical
insight and maintain high accuracy. It is also suitable for any
other IPT systems and resonant converters.
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calculation and SIMPLIS-based simulation.
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