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Abstract—Existing methods for predicting lithium-ion
battery remaining useful lifetime (RUL) rely on complete
capacity degradation data or extensive historical profiles.
However, such sufficient conditions are usually unavailable
in practical battery usage. To cope with this issue, a frame-
work for RUL estimation with fragment data is proposed.
The framework utilizes a small amount of prior knowledge
as benchmark data to create an empirical model-based pre-
dictive method for estimating RUL by fragment historical
data during nonlinear degradation stage. A more specified
parameter initialization is obtained by trend identification
of the fragment. Particle filter (PF) algorithm is utilized for
model parameter update with proposed improved resam-
pling strategy. RUL predictions using two different datasets
demonstrate the effectiveness of the proposed method. An
error margin of less than ten cycles in RUL predictions is
consistently achieved in CS2 dataset when employing frag-
ments ranging from 50 to 60 cycles. And an error margin of
around 20 cycles is achieved in CX2 dataset by fragments
ranging from 60 to 80 cycles. The proposed method ren-
ders a more precise and stable predictive result with high
confident level.

Index Terms—Lithium-ion battery, prediction, remaining
useful life, trend identification.

I. INTRODUCTION

A. Research Background and Problem Definition

L ITHIUM-ION battery excels among different energy stor-
age technologies due to its low self-discharge rate, long

charge and discharge cycles, and stable electrochemical char-
acteristics [1], [2], [3]. The capacity of lithium-ion batteries
degrades over time. The degradation is caused by extrinsic
factors, such as temperature and C-rate, as well as intrinsic
factors, such as parasitic reactions [4], [5]. As the increasing
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cycles of repeated charging and discharging process, the battery
experiences capacity fade, leading to reduced runtime and per-
formance inefficiencies. To effectively address the challenge of
capacity degradation in lithium-ion batteries, accurate prediction
of capacity trends and estimation of the remaining useful lifetime
(RUL) is essential.

The RUL of a battery refers to the number of operational
cycles it can undergo before its capacity deteriorates to the failure
threshold [6]. Methods for capacity prediction and RUL esti-
mation typically adhere to a structured procedure. A predictive
model is formulated to determine the health status of the battery
based on battery performance characteristics. Then, selected
performance characteristics of the target battery are gathered
from its historical operational cycles. By integrating the obtained
features with the predictive model, the number of cycles before
the battery reaches its failure threshold is calculated, which will
be considered as RUL.

Such model always require a dataset comprising multiple
batteries of a similar type and operating under consistent usage
patterns, thereby enabling a comprehensive reflection from bat-
tery characteristic to health status. However, greater variability
in working condition and usage scenarios exist in the real-world
battery, making it challenging to obtain a comprehensive and
consistent dataset. Furthermore, a number of portable or mobile
devices are not equipped with advanced battery management
systems. Such devices often lack the capability to collect multi-
ple performance characteristics and archive extensive historical
battery data. Therefore, an RUL prediction method based on
fragment data and limited background knowledge is proposed
to handle the aforementioned scenario.

B. Related Work

Various approaches have been explored to predict battery ca-
pacity degradation and estimate RUL. The method of modeling
battery degradation behavior can be categorized into physics-
based models, empirical models, and data-driven models.

Physics models directly incorporate the chemical reactions
occurring inside the battery, providing an accurate description
of capacity degradation mechanisms [7]. However, due to the
complexity of chemical reactions, physics models often involve
more intricate parameters [8], [9]. Although reduced-order mod-
els [10] and equivalent circuit models [4], [11] are proposed for
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simplification, most of the parameters can still only be sampled
and tracked by dedicated equipment. Consequently, they are
unsuitable for online estimation applications.

In recent years, artificial intelligence has gained tremendous
popularity [12], with a particular focus on data-driven models.
These approaches emphasize the utilization of data for learning,
without relying on explicit knowledge of underlying degradation
mechanisms. Various data-driven algorithms, such as support
vector machines [13], Gaussian process regression (GPR) [14],
[15], and various artificial neural networks [16], [17], have been
employed to construct predictive models based on input–output
relationships. In a recent study [17], a BiGRU-TSAM network
was established based on three or more complete degradation
curves as training data to extract battery features. Another
study [18] requires an even larger set of features from repeated
charge and discharge cycles to ensure the accuracy of the predic-
tive model. Although it is claimed in [15] that a model-free GPR
approach can extract statistical characteristics from historical
battery running data, it is important to note that the accuracy of
prediction still heavily relies on the length of available historical
data before making predictions. In [19] and [20], advanced
strategies such as transfer learning and virtual data generation
are proposed to address the challenge of limited historical data
in model derivation and prediction. These methods involve
synthesizing measured data with a pretrained model to enhance
the training and prediction process. However, a well-prepared
pretrain model still requires adequate dataset of battery operation
data to yield accurate capacity predictions.

Therefore, for most data-driven methods, the availability of
sufficient training data is paramount to establishing a robust
and generalized model. The model’s accuracy is significantly
influenced by the quality and representativeness of the training
data and can be adversely affected when dealing with limited or
noisy data in practical usage.

On the contrary, empirical models are more readily integrated
into probabilistic frameworks for RUL prediction. These models
employ various functions to characterize the degradation pro-
cess [21], [22]. Consequently, they can effectively capture the
overall degradation trend of the battery with relatively limited
data acquisition. However, the inherent lack of physical inter-
pretation in empirical models means that they primarily capture
the shape of capacity decay trends and may lack adaptability.
As a result, the parameters obtained from an empirical model
should be updated and adjusted, considering the actual mea-
surements of the target battery. State–space methods, such as
the Kalman filter (KF) [23] and particle filter (PF) [24], [25], are
widely utilized for parameter update, which is accomplished
by integrating information from both the model and actual
measurements.

As demonstrated in [26], PF exhibits superior accuracy across
a spectrum of empirical and physics-based models compared to
a group of filtering algorithms, due to its inherent flexibility
and capability to manage nonlinear, non-Gaussian states. Fur-
thermore, in [27] and [28], adaptations of the PF have been
introduced to tackle the challenge of particle degeneracy and
to augment the effectiveness of the predictions. However, what
is not often thoroughly clarified is the critical dependence of

Fig. 1. Proposed framework for RUL prediction with fragment historical
data.

the PF algorithm’s accuracy on the proper configuration of
hyperparameters and initial values.

The hyperparameters usually consist of the noise distribu-
tion of the state and observation equation, which reflects the
modeling and measurement error in the algorithm. Modeling
error is significantly influenced by the initial guess of the model
parameters at the start of the PF. Generally, a smaller modeling
error is conducive to achieving greater stability and precision
in predictions. The majority of existing model-based method-
ologies operate under the assumption that complete historical
data starting from the very beginning of battery degradation is
accessible. Therefore, the initial guess can be set equal to the
parameters obtained from empirical model to achieve a small
modeling error. In [21], to consider the diversity between the
battery data for modeling and the target battery, the model
parameters were initialized via Dempster–Shafer theory. The
method is proved effective for integrating diverse battery data
and is applicable in parametric initialization. Nonetheless, when
dealing with fragment data with unknown starting cycle still
complicates the initialization process. Since the inherent differ-
ences in the working environment and usage patterns between
different target batteries, an optimal initial value in one set of
test may not be directly transferable to another target battery.
The existing approaches face challenges when applied to RUL
estimation scenarios involving fragmented data.

C. Motivations and Contributions of This Work

In this sense, a capacity and RUL estimation method using
fragment data is proposed, as shown in Fig. 1. The method
requires a prior degradation curve as a benchmark to represent
one possible degradation process and establish an empirical
model. Battery degradation usually consists of a mild linear
phase and a accelerated nonlinear phase [29]. During the linear
degradation phase, the trend observed from a fragment does not
necessarily presage the subsequent nonlinear, rapid degradation
phase. Therefore, predictions made during the linear phase may
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not accurately account for the accelerated degradation that oc-
curs in the nonlinear phase. In this work, fragments are first
classified according to its degradation rate compared to the
nominal capacity.

For the fragment capturing a sufficient duration on nonlin-
ear phase, its trend is identified by comparing the degradation
pattern from the empirical model. This trend identification is
used for a more fitted initialization of PF. The model is further
updated with PF algorithm based on the measured capacity of the
fragment, which provides a better description of the fragment
dynamics. By updating the model, the capacity and RUL can
be predicted. The contributions and innovations of the proposed
method can be summarized as follows.

1) The proposed method only requires a single complete
capacity degradation curve of a specific type of battery
under certain operational conditions as the benchmark.
This benchmark serves as prior knowledge and models
the general trend.

2) A trend identification approach is employed to determine
the initial guess for the model parameters describing the
fragment data. This provides a more appropriate initial-
ization for the parameter update algorithm, narrowing the
parameter searching range and increasing algorithm sta-
bility. The parameter update algorithm is also improved
based on the PF, resulting in more accurate predictions
and a more concentrated distribution of prediction results.

3) A capacity and RUL estimation framework is proposed,
allowing flexibility in choosing the modeling and param-
eters. Satisfactory RUL estimation can be achieved even
with a basic modeling and prediction method.

II. METHODOLOGY

A. Selection of Empirical Model

To effectively model battery degradation trends, empirical
models are utilized due to their simplicity and intuitive form.
Various expressions of empirical models have been developed
to describe the degradation process of different types of batteries,
such as the double exponential model, polynomial model, and
ensemble model [22]. These models are represented by (1), (2),
and (3) as shown in the following:

Q = a exp(b · k) + c exp(d · k) (1)

Q = ak2 + bk + c (2)

Q = a exp(b · k) + ck2 + d (3)

where k = 1, 2, 3, · · ·K is the cycles of repeated charging and
discharging of the battery cell and the maximum length of model
is denoted as K.

The three different models are applied to fit the degradation
curve from two typical degradation curve in the MATLAB envi-
ronment using the Levenberg–Marquardt algorithm to minimize
the root-mean-square error (RMSE). The fitting performance
of each model on the benchmark curve of the two datasets is
depicted in Fig. 2.

Fig. 2. Fitting performance among different models applied to the
typical degradation curve of two datasets. (a) CS2-37. (b) CX2-37.

Among the three models considered, both double exponential
model and ensemble model demonstrate superior fitting per-
formance. However, the inclusion of a quadratic term in the
ensemble model introduces potential concerns regarding model
stability. Hence, the double exponential model is selected as the
empirical model, with the parameters of a, b, c, and d determined
based on the benchmark curve. The derived empirical model
from benchmark curve is denoted as Q1:K .

B. Fragment Trend Identification

In the conventional PF method, the initial states and the vari-
ance of noise for particles are often determined empirically. Typ-
ically, increasing the selection of modeling error can expand the
search space for particles, potentially aiding in the discovery of
optimal model parameters. Given the nonlinear and exponential
expression of degradation, even minor variations in individual
parameters can accumulate to significantly impact the future
trend predictions. This can adversely affect the convergence and
stability of the PF algorithm. It is crucial to constrain the variance
of each parameter within a narrow range to maintain robustness.
Therefore, initializing model parameters with a small modeling
error is essential for the effectiveness of the filtering algorithm.

For a typical capacity fragment observed in practical battery
operation, the initial cycle is often unknown. The fragment is
noted as q1:lfrag , where lfrag is the fragment length. Since the
fragment share a similar degradation trend with the benchmark
model Q, the relationship between the fragment and benchmark
can be expressed as

q(t) = Q(λt+ t0) (4)

where t = 1, 2, · · · lfrag . By examining the normalized capaci-
ties at both the starting and ending point of fragment, it is feasible
to identify a corresponding segment on the benchmark model
that exhibit an equivalent degree of degradation. Recognizing
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Fig. 3. Examples of trend identification approach applied to sampled
fragment data.

that fragment data of target battery may be influenced by mea-
surement errors and variability stemming from local dynamic
characteristics, the starting and ending capacity value to fit for
the fragment is defined as

q̂(1) =
1
2
(q(1) + max(q(t))

q̂(lfrag) =
1
2
(q(lfrag) + min(q(t)). (5)

The corresponding segment in the benchmark model is charac-
terized by its initiation at the kref cycle and a duration of lref

cycles. Therefore

q̂(1) = Q(λ + t0) = Q(kref)

q̂(lfrag) = Q(λlfrag + t0) = Q(kref + lref). (6)

The target fragment can be considered as a translate and scale
transformation of the benchmark model, following:

λ = lref/(lfrag − 1)

t0 = kref − λ. (7)

The initial guess of the model parameters based on trend iden-
tification can be expressed as

a0 = a exp(bt0)

b0 = λb

c0 = c exp(dt0)

d0 = λd (8)

where [a0; b0; c0; d0] are the parameters of the benchmark model.
As an example shown in Fig. 3, the pink curve is the initial guess
of the parameters based on identifying the trend of fragment.
The green curve is the initial guess directly based on fitting the
fragment with double exponential model using nonlinear least
squares (NLLS).

Although the initial guess derived by NLLS aims to minimize
the discrepancy between the model and the data fragment, this
approach can render the model more sensitive to the influence
of outliers and inherent fluctuations within the fragment. Given
that there exist capacity recovery within the fragment, the NLLS
fitting process could be adversely affected by this phenomenon.
The resultant estimate may exhibit an initial rise followed by

a decline, potentially leading to a misalignment between the
model parameters and the actual trajectory of battery capacity
degradation.

By utilizing the trend identification of the fragment, the em-
pirical model with refined initial parameters θ0 = [a0; b0; c0; d0]
can effectively capture the trend of fragments and subsequently
be utilized for capacity and RUL prediction.

C. Parameter Update for Capacity Prediction

To improve the prediction of the future trend, the model
parameters are further updated based on the specific measured
fragment data. Given the strong nonlinearity of battery capacity
degradation and the potential presence of complex noise distri-
bution in the sampled data, an improved PF-based parameter
update method is employed.

To model the uncertainty of the parameters, the noise of
parameters a, b, c, and d, as well as the error of model output is
assumed to follow a normal distribution. The state equation of
the battery degradation process can be expressed as follows:

at = at−1 + va

bt = bt−1 + vb

ct = ct−1 + vc

dt = dt−1 + vd (9)

qt = at exp(bt · t) + ct exp(dt · t) + vr (10)

where [at; bt; ct; dt] are the parameters estimated at cycle t,
and qt is the measured capacity from fragment at cycle t.
va ∼ N(0, σ2

a), vb ∼ N(0, σ2
b), vc ∼ N(0, σ2

c), vd ∼ N(0, σ2
d)

are the noise variation of state transition and vr ∼ N(0, σ2
r) is

the noise variation of output.
The parameters are initialized considering the trend and pre-

dicted position of the fragment, as described in (7). The updated
parameters at cycle t are denoted as Xt = [at, bt, ct, dt]. Given
a series of measurements from the fragment data q1:lfrag

, the
goal is to estimate the proper probability distribution of the
parameter P (Xt|q1:t). Within the Bayesian framework, the pos-
terior distributionP (Xt|q1:t) can be recursively derived from the
distribution P (Xt−1|q1:t−1) obtained from the previous cycle.

According to the Chapman–Kolmogorov equation, the prior
probability distribution of Xt considering posterior distribution
P (Xt−1|q1:t−1) obtained from cycle k − 1 can be expressed as

P (Xt|q1:t−1) =

∫
P (Xt|Xt−1)P (Xt−1|q1:t−1)dXt−1. (11)

At cycle t, new observation qt is obtained and used to update
the prior distribution via Bayes’ rule

P (Xk|q1:t) =
P (Xt|q1:t−1)P (qt|Xt)

P (qt|q1:t−1)
(12)

where P (qt|q1:t−1) is a normalized constant. However, analyt-
ically evaluating these distributions is challenging due to the
complex integrals. Therefore, Monte Carlo simulation is utilized
to approximate the probability density function with a set of
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particles and their associated weights

P (xt|q1:t) =
∑
i

wi
tδ(Xt −Xi

t) (13)

whereXi
t(i = 1, 2, 3, . . . ,M) represents a set of particles drawn

from a distribution, and wi
t signifies the Bayesian importance

weight associated with the particles. Since the precise distri-
bution of P (Xt|q1:t) is unknown, the particles are sampled
using a manually designed importance sampling function. As
the number of sampled particles increases, the simulation of the
distribution becomes more representative of the true underlying
process. The distribution of particles weights is updated in a
recursive formula expressed as

wi
t = wi

t−1P (qt|Xi
t). (14)

Typically, the likelihood P (qt|Xi
t) is decided regarding the

residual between particles and measurements at cycle t, which
is expressed as

zit = qit − qt

P (qt|Xi
t) =

1√
2πσr

exp(−(zit)
2/2σ2

r). (15)

In conventional PF algorithm, to mitigate the issue of particle
degeneracy, number of effective particles (Neff) is calculated
after each iteration. Resampling is triggered if Neff drops under
a predetermined threshold. However, since a more precise ini-
tialization of model parameters, a rather small value of variance
in state equation is obtained, leading to a reduced disparity in
particle weights. By conventional random or stratified resam-
pling, diminished fluctuations in particle movement potentially
lead to a wide-spread of particles range. Therefore, a manual
intervention is applied to enhance the convergence. Specifically,
the particles with lower weights are intentionally converged
toward the particles Xmax with the highest weight using the
following equation:

Xi ′
k = Xi

k + β(Xmax −Xi
k) (16)

where β is a random step with manually controlled upper bound
to decide the tendency of particle convergence. As a result, a
more concentrated particle distribution and more stable results
can be obtained through iteration. The updated parameters for
each iteration can be expressed as

X̃k =

M∑
j=1

wi
kX

i
k. (17)

The weighted average of the particles after the final iteration
serves as an expectation of the future degradation trend of the
fragment. In addition, the independent models represented by
each particle contribute to the predicted probability density
(PDF) distribution.

III. EXPERIMENT CONDUCTION

A. Dataset Description

The experiment utilizes two types of batteries from the Center
for Advanced Life Cycle Engineering (CALCE) in University of

Fig. 4. Dataset utilized in experiment. (a) CS2 cells. (b) CX2 cells.

Maryland [22]: CS2 and CX2 cells, both with LiCoO2 cathodes
but differing in configuration and size. CS2 cells have a capacity
of 1.1 Ah, while CX2 cells have 1.35 Ah. Each type undergoes
repeated charge-discharge cycles without strict thermal control.
CS2 cells are charged at 1 C constant current until 4.2 V, then
voltage hold until current falls below 0.05 A, and discharged
at 1C constant current until 2.7 V. CX2 cells follow the same
profile but the current rate is at 0.5 C.

Three cells are selected for each type. One serves as the
benchmark for establishing an empirical model based on its
degradation trend, while the other two are practical batteries for
validating the proposed method using fragment data to predict
capacity and RUL. For CS2 cells, CS2-37 is the benchmark,
and CS2-35, CS2-38 are for validation. For CX2 cells, CX2-34
is the benchmark, and CX2-37, CX2-38 is for validation. Both
types is considered reach EOL when capacity degrades to 80% of
rated capacity. Fig. 4 shows the normalized capacity degradation
curves, revealing different trends between types and variations
within the same type due to intrinsic parameters.

B. Experiment Design for RUL Prediction

The experiment follows the proposed framework shown in
Fig. 4. CS2 and CX2 are independent datasets and are tested
separately. We take the capacity and RUL prediction experiment
on CS2 cells as an example. The experiment procedure can be
summarized into the following steps.

1) Data processing: The benchmark data (CS2-37) under-
goes data smoothing and outliers removal.

2) Empirical model Q establishment: Double exponential
model is selected to represent the degradation trend based
on curve fitting of the benchmark data.

3) Fragment generation: Fragments are generated from the
validation data using a starting cycle k0 and a fragment
length lfrag .
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4) Trend identification: A trend identification approach is
applied to identify the segment that best represents the
fragment trend inQ. The model parameters are initialized
according to (7) for subsequent parameter updates.

5) Improved PF algorithm: The improved PF algorithm is
applied to tune the model parameters, considering the
dynamics of the fragment. The updated model, denoted as
Qpred, is obtained as the expectation of the updated model
parameters from (17).

6) RUL prediction: The updated model Qpred is extended
to determine the cycle when Qpred reaches the failure
threshold, which serves as the predicted RUL. The ab-
solute error (AE) between the real RUL and the predicted
RUL is calculated to evaluate the prediction accuracy. In
addition, the width of PDF is computed as an indicator of
model uncertainty and stability.

7) Repeat different fragments or apply on other target bat-
teries.

8) For the validation of the universality of the proposed
framework, CS2-38 and CX2-37 are also considered as a
new benchmark data and repeat the testing process.

C. Parameter Configuration for Prediction Algorithm

Since it is more necessary for the capacity degradation trend
and RUL prediction when battery enters the nonlinear degra-
dation stage, the fragment data selected for prediction should
include adequate length at the nonlinear stage. As the degrada-
tion mechanism is not the primary focus of this work, the onset
of the nonlinear degradation stage for battery cells is identified
when the cell capacity drops to 85% of its nominal capacity.

To compare the proposed method with conventional methods,
two different filtering algorithms, KF and PF, are employed for
prediction purposes. Both algorithms are initialized using NLLS
and trend identification methods. Given that NLLS and trend
identification provide a precise initial estimate for fitting the
fragment data, the noise variance of the state equation is set
to 10% of the initial parameter values. The measurement noise
variance is set at 1%, a uniform value across all fragment input
and filter algorithms.

For the KF, implementing adaptive noise variance adjustment
can reduce the algorithm’s sensitivity to the initial estimate.
Thus, the adaptive Kalman filter (AKF), initialized with an
estimate from NLLS, is chosen as a representative method.
Regarding the PF, when the fragment includes linear stage data,
the proposed method aligns with the conventional PF, serving
as a tracker and gradually update model parameters to fit the
degradation trend. An enhanced resampling strategy is imple-
mented as the algorithm progresses into the nonlinear stage.
The manual intervention parameter, β, which governs the step
of particle convergence, is set to a random value not exceeding
0.5. This setting ensures a controlled aggregation of particles
without being overly aggressive, maintaining a balance between
convergence and diversity in the PF.

To assess the performance of the methods, comparative anal-
ysis is conducted utilizing two principal metrics, AE and the
width of PDF (WPDF). The specific calculation formula is as

follows:

AE = |RULp − RULt|
WPDF = max(RULp,i)− min(RULp,i) (18)

AE quantifies the discrepancy between the predicted RUL and
the true RUL, which serves as a direct reflection of the prediction
accuracy. PDF is constructed from the aggregated distribution
of particles within the PF algorithm. The width of the PDF
represents the span between the maximum and minimum pre-
dictions derived from the particle ensemble. The PDF width
listed in the table indicates the change using the proposed im-
proved resampling method compared to the random resampling
method. A more constricted PDF signifies a tighter clustering of
particles, thereby augmenting the robustness and reliability of
the predictive results.

IV. RESULTS AND DISCUSSIONS

Figs. 5–10 show fragments of varying lengths from the non-
linear degradation stage of different batteries, represented by
dashed blue lines as historical data inputs for prediction models.
The figures also display prediction results from various models
using curves of different colors: green for AKF, yellow for
conventional PF, and purple for PF with improved resampling
strategy. The shaded areas of corresponding colors indicate the
PDF ranges for the PF algorithm, showing prediction uncer-
tainty. Predicted RUL, AE, and PDF width are detailed in Tables
I and II for analysis and comparison.

A. Comparison of Prediction Algorithm

The results indicate that predictions derived from the AKF
are susceptible to the influence of outlier anomalies. AKF
primarily operates by extending future estimates based on the
local trajectory of historical data. Consequently, the stability of
predictions is not constant and can be significantly impacted by
measurement errors or capacity regeneration. In the case of the
CS-38 dataset, particularly when the fragment length is set to
35, the fragment ended at a region where capacity regeneration
occurs. The AKF model, in response to this increase, tends to
follow the trend, thereby projecting a ascending future trend.
Similar results can also be found in CX2-38 battery.

Compared with AKF, PF demonstrates a modest enhance-
ment in its resilience to fluctuations, primarily attributed to its
nonparametric nature. This characteristic allows PF to adapt
more flexibly to the underlying dynamics of the system, thereby
providing a improvement in the robustness of predictions against
variability. Despite this, the predictive accuracy still encounters
challenges in precisely capturing the actual degradation trends
of system using NLLS initialization.

By applying the initial guess with trend identification, the
predictive accuracy is significantly enhanced. For CS2-35, AE
is decreased to one cycle, eight cycles, and one cycle at the
fragment length of 40, 50, and 60 cycles, respectively. This is a
marked improvement over the results with NLLS initialization,
which yielded errors of 42 cycles, 21 cycles, and 18 cycles for
the same fragment lengths. For CS2-38, the application of trend
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Fig. 5. CS2-35 capacity prediction and RUL prediction based on the benchmark data of CS2-37. (a) k0 = 478, lfrag = 40. (b) k0 = 478, lfrag = 50.
(c) k0 = 478, lfrag = 60.

Fig. 6. CS2-38 capacity prediction and RUL prediction based on the benchmark data of CS2-37. (a) k0 = 548, lfrag = 35. (b) k0 = 548, lfrag = 40.
(c) k0 = 548, lfrag = 50.

Fig. 7. CS2-35 capacity prediction and RUL prediction based on the benchmark data of CS2-38. (a) k0 = 478, lfrag = 40. (b) k0 = 478, lfrag = 50.
(c) k0 = 478, lfrag = 60.

Fig. 8. CX2-37 capacity prediction and RUL prediction based on the benchmark data of CX2-34. (a) k0 = 342, lfrag = 50. (b) k0 = 342, lfrag = 60.
(c) k0 = 342, lfrag = 70.

Fig. 9. CX2-38 capacity prediction and RUL prediction based on the benchmark data of CX2-34. (a) k0 = 301, lfrag = 65. (b) k0 = 301, lfrag = 75.
(c) k0 = 301, lfrag = 85.
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Fig. 10. CX2-38 capacity prediction and RUL prediction based on the benchmark data of CX2-37. (a) k0 = 301, lfrag = 65. (b) k0 = 301, lfrag
= 75. (c) k0 = 301, lfrag = 85.

TABLE I
RUL PREDICTION RESULTS ON CS2 CELLS

TABLE II
RUL PREDICTION RESULTS ON CX2 CELLS

identification for initialization also results in a significant reduc-
tion in AE. Specifically, for fragment lengths ranging from 35
to 50 cycles, the AE is consistently below ten cycles, indicating
a higher level of precision with PF.

Moreover, the implementation of the improved resampling
method has been shown to significantly narrow the PDF width
by over 50%, while resulting in a marginal difference in AE
when compared to the conventional PF approach. The error fluc-
tuations observed with different fragment lengths are reduced.
This suggests that the improved resampling method contributes
to a more robust and reliable predictive framework capable of
handling variations in target battery.

B. Effect of Fragment Length and Position

Fragments at the nonlinear degradation stage are deemed to
have a more significant impact on the prediction of capacity
trends and RUL. Therefore, the primary focus of this work
is on fragments that commence at the onset of the nonlinear
degradation stage. However, if the fragment length is excessively
long, it may approach the failure threshold, thereby limiting

the effectiveness of early predictions. To balance this, fragment
selection is restricted to no more than half of the total cycles
between the 85% and 80% capacity thresholds, which translates
to approximately 30–60 cycles for CS2 batteries.

Comparing the prediction effect of the proposed PF with
trend identification, a longer fragment length can generally
encapsulate more detailed degradation information, leading to
more reliable predictions. Nevertheless, the position of the frag-
ment is also a critical variable, considering dynamics, such
as capacity regeneration. In CS2-35, the observed increase
in AE at the 50-cycle fragment length utilizing PF can be
attributed to the occurrence of a capacity regeneration event
immediately following the fragment. Given the absence of prior
knowledge regarding this capacity increase, anticipating such
a deviation in the degradation pattern is inherently challeng-
ing for filter algorithm. Conversely, when the fragment length
is extended to 60 cycles, the predictive model is able to in-
corporate the newly observed capacity increase. This updated
information allows for a more accurate trend identification
of fragment, thereby enhancing the precision of future trend
prediction.
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For CS2-38 where capacity regeneration is not that obvious in
the prediction range, the predictive accuracy of PF is enhanced
as the fragment approaches to the 80% threshold.

C. Generalization Ability

The generalization ability of the proposed method is further
validated by incorporating diverse benchmark data and on dif-
ferent battery type. A new benchmark empirical model with
different parameters is established based on CS2-38 in place of
CS2-37, which is shown in Fig. 7. The final prediction result ex-
hibits a fluctuation of±5 cycles relative to the outcomes obtained
using the CS2-37 benchmark. This observation demonstrates
its capability to accommodate any reliable benchmark data to
obtain effective prediction.

The prediction method is also applied to CX2 battery dataset.
Due to the more noisy data and pronounced fluctuations, the
capacity curve is prone to multiple crossings of the 80% nom-
inal capacity failure threshold. This variability can introduce
bias in the computation of the actual RUL. In this work, the
first instance when the capacity curve degrades to the failure
threshold is selected as the EOL. This selection may result in
an overly conservative estimation of the true RUL, potentially
overestimating the error. Consequently, as the AE data presented
in the Table II, the prediction error associated with the CX2
dataset is observed to be greater.

However, as can be seen from Figs. 8 to 10, the PF prediction
model remains highly informative for forecasting future capacity
trends. For the CX2-38 dataset, the predictive error is con-
strained to approximately ten cycles, utilizing fragments with
a length of 75–85 cycles. This level of accuracy is consistently
achieved across two distinct benchmark models, demonstrating
the robustness of the approach. In addition, the implementa-
tion of an improved resampling strategy has effectively gath-
ered the distribution of particles, thereby narrowing the width
of the PDF width by over 60% and enhancing the precision
of the predictions.

Conversely, the CX2-37 dataset presents a capacity regen-
eration phenomenon occurring too much near the EOL. This
regeneration inevitably leads to a more substantial error, since
none of the selected fragment includes the potential trend at such
a final stage. Nonetheless, in the majority of cases, the proposed
methodology is capable of delivering estimates that are both
reasonably accurate and stable.

V. CONCLUSION

In this article, a framework for estimating the RUL is proposed
to address the challenge of fragmented data in RUL prediction.
The framework utilizes a small amount of prior knowledge to
create a general benchmark model that captures the degradation
trend. It then extracts the trend from the fragment data to identify
its degradation trend from the benchmark. The parameters are
further updated based on the measured fragment data utilizing
PF algorithm.

To validate the proposed framework, RUL predictions are con-
ducted using two different datasets CS2 and CX2 with different
battery types. In CS2 dataset, an error margin of less than ten

cycles in RUL predictions is consistently achieved, particularly
when employing fragments ranging from 40 to 50 cycles at the
nonlinear degradation phase. In CX2 dataset, although an error
margin of around 20 cycles exist in RUL predictions due to
the inherent volatility of the battery data, the predictive model’s
stability and accuracy have nonetheless been enhanced relative
to the AKF. It is plausible that the precision of predictions could
be further elevated with the acquisition of more refined and
densely sampled data.

The results demonstrate the effectiveness of the proposed
method for RUL prediction based on the improved PF algo-
rithm and trend identification approach. By leveraging the trend
identification of fragments as the initial estimate for the filtering
algorithm, the resultant predictions are rendered more precise
and stable. Moreover, the refinement of the resampling phase
within the PF algorithm serves to constrict the PDF width,
thereby enhancing confidence in the predictive result.

Furthermore, the proposed framework provides a foundation
and guidance for dealing with fragmented data in RUL estima-
tion for practical battery usage scenarios. Future work can focus
on applying more advanced modeling techniques, extracting
additional features and information from the fragment data,
and developing more accurate parameter identification meth-
ods. These advancements have the potential to further improve
the accuracy of RUL estimation and enhance decision-making
processes in various industries.
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