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Wide Voltage Range Efficiency Enhancement Scheme
for Input-Parallel-Output-Series DAB Converters
in 800 V DC Microgrids

Haoyu Zhang "“, Jiawei Liang
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Abstract—Input-parallel-output-series dual-active-bridge
(DAB) converter presents an appealing approach in energy storage
integrated high-voltage dc microgrids. The wide voltage range of
the energy storage battery introduces significant challenges to the
optimal design of the DAB converter. To cope with this issue, this
article proposes a hybrid modulation scheme to enhance the wide
voltage range efficiency. It combines asymmetrical pulsewidth
modulation (APWM), phase-shift modulation, and coupled
inductor modulation, aimed at optimizing circulating currents
and extending the zero-voltage-switching (ZVS) range across
wide voltage and load ranges. APWM ensures that the primary
and secondary voltages are aligned through the intermediary dc
blocking capacitor. Meanwhile, the coupled inductor modulation
achieves an adaptive equivalent series inductance. The operational
modes of this modulation scheme are outlined, with a thorough
analysis of the relationship between root-mean-square (rms)
current, phase shift ratio, voltage gain, and output power. Based
on these insights, a control strategy is developed to extend the ZVS
range with reduced rms currents. To validate the concept, a 2-kW,
100-kHz prototype is designed and tested. The prototype interfaces
a 200-400 V battery port to an 800 V dc bus. Recorded efficiencies
peak at 98.3% in forward mode and 98.2% in backward mode,
with consistently high performance maintained across wide voltage
and load ranges.

Index Terms—Bidirectional dc/dc converter, dual-active-bridge
(DAB), input-parallel-output-series (IPOS), wide voltage range,
zero-voltage-switching (ZVS).

I. INTRODUCTION

NERGY storage systems (ESS) are crucial components
E in dc microgrids, offering flexible power and energy ser-
vices [1], which require high conversion efficiency. Operating
at 800 V, as opposed to 400 V, significantly reduces conduction
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losses, positioning the 800 V bus as a promising evolution for
dc microgrids. However, the transition to a high-voltage bus
introduces new challenges for power electronics converters,
necessitating advanced design and control strategy to ensure
optimal performance and efficiency.

To satisfy the high-power capability and the high-voltage
stress of ESSs in 800 V dc microgrids, a modular structure is
introduced to isolated converters to increase the overall current
and voltage levels and the conversion efficiency. With multiple
modules combined, switches’ voltage and current stress can be
reduced, compared with conventional single-module convert-
ers. [2] Thus, low-rating power semiconductor devices can be
employed in high-power applications. Considering the series-
parallel connection forms on both sides of the modules, there
are four architectures: input-parallel-output-series (IPOS) [3],
[4], input-series-output-parallel (ISOP) [5], input-series-output-
series [6], input-parallel-output-parallel [7]. The parallel struc-
ture can split the current and the series structure can reduce the
voltage stress of the power switches. The energy storage battery
exhibits a lower voltage compared with the 800 V bus and high
current under heavy load, so the IPOS structure is an ideal choice
for an ESS in an 800 V microgrid [8].

Galvanically isolated dual-active-bridge (DAB) converter is
commonly used as the modular converter [4], [9]. Besides,
the bidirectional power flow capability and the relatively wide
voltage gain range make it more suitable for battery charging
and discharging scenarios [10]. The single-phase-shift (SPS)
modulation is the simplest modulation scheme for DAB convert-
ers with only one control parameter. [11] The phase shift ratio
between two active bridges regulates the power flow between the
primary and secondary sides. When the input and output volt-
ages are matched, the DAB converter operates at a trapezoidal
inductor current waveform with minimized root-mean-square
(rms) current and wide zero-voltage-switching (ZVS) range,
giving rise to a high efficiency. However, in wide-range voltage
scenarios, such as batteries in ESS, the ZVS feature easily gets
lost at light load, and the circulating current increases [12].

To optimize the performance of a DAB converter under
unmatched conditions, modulation schemes with multiple con-
trol degree-of-freedoms (DoFs) and optimized topologies for
active bridges have been studied. Modulations based on phase
shift, such as extended-phase-shift (EPS) [13], [14], [15], [16],
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dual-phase-shift (DPS) [17], [18], and triple-phase-shift
(TPS) [19], [20], have already been widely researched. These
modulations introduce inner phase shifts on the primary or
secondary sides to modulate the voltages. With these extra
control DoFs, the rms current can be reduced [16], [18] and the
ZVS range can be expanded. [15] However, these phase-shift
modulations (PSMs) still encounter high rms current when the
normalized voltage gain is far from the matched point, limiting
the efficiency over a wide voltage range.

Besides these PSMs, other different modulations have been
investigated for wide voltage range applications, in which the
duty cycle of the switches is not restricted to 0.5, which provides
another control freedom. In [21], dual asymmetrical pulsewidth
modulation (APWM) is proposed. Two independent duty cycles
help reduce the control complexity and suppress the circulat-
ing current. However, the upper switches still encounter hard-
switching owing to the active-clamp-based modulation. In [22],
ahybrid modulation combining APWM with PSM is introduced.
With an extra dc block capacitor, the voltage match strategy
is realized. By controlling the duty cycle, the voltages of two
sides can always be matched on the half of a cycle, while the
circulating current can be optimized and the control strategy
is simple. Meanwhile, the converter has two ideal operation
points at the two extreme points of the gain range, where it
can operate the same as SPS with matched voltage. However,
when the converter operates at the medium gain between the
two extreme points, the ZVS range is still limited, which causes
low efficiency. In [23], an asymmetric EPS (AEPS) plus TPS
modulation is introduced to further optimize rms current and
ZVS range, with three control DoFs. However, the analysis and
the design of the optimization trajectory are complicated.

Apart from the optimization method for single-module DAB
converters above, schemes designed for modular-structure DAB
converters are also reported. In [24], an auxiliary coupled induc-
tor connected in a paralleled full-bridge structure is introduced
to extend the ZVS range. However, the coupled inductor per-
forms as an extra component besides existing series inductors
and transformers, which is essential for DAB converter, and
the circuit complexity and magnetic component sizes increase.
Besides, in [25], a scheme that substitutes the series independent
inductors with coupled inductors connected across modules is
introduced. Apart from the advantages of volume, the coupled
inductor gives two different inductances under different voltage
excitations over the inductor. In [26], a hybrid SPS modulation
is introduced to modulate the coupled inductor and achieve
optimized rms current at full load range. In [27], the converter
is modulated to operate under LLC or DAB mode based on
modulated the coupled inductor. However, these researches on
modular DAB converters with coupled inductors mainly focus
on dc transformer applications, where the voltage gains tend to
be fixed.

In this manuscript, to achieve enhanced efficiency over a wide
voltage range, we propose a hybrid modulation scheme based
on the voltage match principle for the coupled-inductor-based
IPOS-DAB converter for 800 V microgrids. The circulating
current and the ZVS range are optimized within a designed
voltage range. At the two extreme points in the voltage range, the
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Fig. 1. Schematic of IPOS-DAB converter with coupled inductor.

converter operates with fully matched SPS modulations. With
the coupled inductor, two equivalent inductances can be de-
signed at different operating conditions to optimize heavy-load
current stress and the light-load ZVS range.

The rest of this article is organized as follows. Section Il intro-
duces the working principle of the proposed hybrid modulation
for the IPOS-DAB based on the coupled inductor. The detailed
control strategy, including ZVS condition and modulation tra-
jectory are analyzed in Section III. Section IV introduces the
design consideration of the prototype of the converter. Section V
presents the experiment results. Finally, Section VI concludes
this article.

II. OPERATION PRINCIPLES ANALYSIS
A. Circuit Configuration

The topology of the researched IPOS-DAB converter is plot-
ted in Fig. 1. As shown, the converter consists of two DAB
modules with an IPOS structure. A battery module serves as the
input, while a high-voltage dc bus is defined as the output. In each
module, two full-bridge structures are placed on the primary and
secondary sides, with a 1:n transformer linking both sides. A dc
block capacitor is placed in series before the transformer. The
series inductors of the two modules are coupled together. The
parameters of the two DAB modules, including input—output
capacitors, self-inductance of the coupled inductor, dc block
capacitor, and power switches, are designed symmetrically to
achieve power balance.

B. Hybrid Modulation Scheme

The key steady-state waveforms of the proposed hybrid modu-
lation scheme are plotted in Fig. 2. Basically, the modulation has
two modes and the modulation of Module A is identical in both
modes. The modulation of Module B is the same as Module A in
Mode I, while it is complementary to Module A in Mode II. As
a result, the two modes differ in modulating the voltages across
the coupled inductor in each module. To simplify the analysis,
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Fig.2. Key waveforms of the proposed hybrid modulation scheme. (a) Mode

1. (b) Mode II.

the modulation in Module A is detailed, and the modulation of
Module B of Modes I and II can be derived easily owing to
symmetry.

In the full bridge on the primary side, the two pairs of
MOSFETS, 514,24 and S34 44, are driven complimentarily, re-
spectively. The duty cycle of MOSFETS S7 424 is set at 50%,
while the duty cycle of the other pair, S54 44, is extended over
50%. The redundant duty cycle is defined as the asymmetrical
duty cycle D, which varies between O and 0.5. Between the
two pairs of MOSFETS, the phase of S5 4 leads the phase of S5 4
with a phase shift ratio 3, varying between 0 and D. Thus, the
output voltage of the primary full bridge, v,y 4, consists of four
intervals with three voltage levels (Vat, 0, and — V4,1 ). The Vi at
interval occupies 0.5 of a period, while the —V},,1 one occupies
0.5 — D. The two zero-voltage intervals occupy D together. The
inner phase shift 5 modulates the phase of the —V},,; interval
separating the zero-voltage interval.

On the secondary side, the MOSFETs are driven complimen-
tarily with a 50% duty cycle. The phases of S5 4 and Sga are
identical. Therefore, a 50% square waveform is generated on
the transformer secondary side. Moreover, an outer phase shift
ratio ¢ between the primary and secondary sides modulates the
DAB module’s power magnitude and direction. ¢ ranges from
0to 0.5 and the primary side can lead or lag the secondary side.

Based on the volt—second balance of the transformer magne-
tizing inductor and the series inductor substituted by the coupled
inductor in this design, capacitor Cp, 4 blocks the dc component
of v,p4. The dc component of v,;, 4 can be derived by the mean
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of the four voltage intervals
1
‘/cpA = ? [0~5T9Vbat + (05 - D)Te(*vbat)]

= DVias. ey

When v, 4 is blocked, the voltage across the inductor and
transformer, v),; 4, can be derived. Thus, the 50% positive level
of vpria is

6p’riA,pos - Vbat - chA = (1 - D)Vbat = _ﬁpriA,neg (2)

where Ui 4 neg 15 the average value of the negative level of the
other 50% intervals, owing to the blocked dc component.

To realize the voltage match, the duty cycle D is modulated
to match the average voltage of v).; 4 With Vg 4, Which satisfies
the expressions

UpriA,pos = ﬁsecA,pos/n 3)
@priA,neg = 6secA,neg/n-
The voltage match equation is derived
‘/bus
1—=D)Vhat = —. 4
( ) bat m (4)

The normalized voltage gain of a single DAB module is
defined as

M)US
G" = . 5
2anat ( )
Therefore, (4) can be expressed as
D=1-G" (0)

which indicates that when V},,; varies, D should be modulated
according to G* to meet voltage match. For the range of D is
from O to 0.5, the general voltage match can be achieved when
0.5 < G* < 1, whichis the operation gain range of the converter.
The rms current and ZV S range can be optimized within the gain
range.

Meanwhile, it should be mentioned that when D is set O or
0.5, the primary bridge operates as a full-bridge or a half-bridge
with a 50% duty cycle and v,,,.; and vy completely match. The
converter operates as the conventional SPS modulation.

C. Coupled Inductor

The voltages across the coupled inductor can be expressed
according to the fundamental circuit theory

vra = La dipa + MdeB
oo b dips
LB = 5B g dt

where L 4 and L g are the self-inductance at modules A and B,
and M is the mutual inductance between the coupled windings.
The equations can be rearranged as

dipa  wvpa —kovrp
dt — La(l—Fk2)
dipp v — kevpa
di  Lp(l—k2)

®)
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Steady-state key waveforms of module A. Forward mode: (a) Mode A: 0 < ¢ < d. (b) Mode B: d < ¢ < 0.5 — D +d. (c) Mode C: 0.5 — D +d <

i < 0.5. Backward mode: (d) Mode D: 0 < ¢ < d.(e) Mode E: d < ¢ < 0.5 — D +d. (f)Mode F: 0.5 — D +d < ¢ < 0.5.

where k.. is the coupling coefficient, defined as M /v/LaLp.

When the converter operates in Mode I, the voltages across the
coupled inductor satisfy vy, 4 = v p. While k. is smaller than 1
generally and the self-inductances L 4 and L g are designed the
same

La=Lp=1Lg 9)
Equation (8) can be simplified as
dipa VLA
dt  Lp(1+k.)
dipB VLB (10)

dt  Lp(1+ke)

Then, it can be easily found that each DAB module has an
equivalent series inductance

Leqr = Li,(1 + k) = Ly, + M. (11
Similarly, when the converter operates in Mode II, where the
voltages across the coupled inductor satisfy vy 4 = —vrp, (8)
can be expressed as
dipa VLA
dt  Lp(1—k.)
di,p VLB (12)

At Lp(l— k)

where another equivalent series inductance can be derived as

Legir = Li(1 — ko) = Ly, — M. (13)

According to the above analysis, the coupled inductor can
be modulated by the driving signals. Thus, each DAB module
exhibits an adaptive equivalent series inductance between Leqr
and Legr s, by switching the operation mode of the two modules
in the IPOS-DAB converter.

D. Power Transfer Characteristics

As is shown in Fig. 2, the modulations of modules A and B
are identical in Mode I, while the drive signals of module B are
complementary to module A in Mode II. Thus, only the modu-
lation on module A needs to be analyzed, and the modulation on
module B can be derived according to the symmetrical property.

Based on the relationship of outer phase shift ratio ¢, /3, and
duty cycle D, six possible operating submodes for module A
are plotted in Fig. 3. Fig. 3(a)—(c) shows the three modes, mod-
ulating forward power from battery to dc bus, where the primary
side leads the secondary side. Fig. 3(d)—(f) shows the other three
modes, modulating backward power, where the primary side lags
the secondary side. In these waveforms, a variable d is defined

as
d = {D_B7
B,

Thus, the variable d is the ratio of the second interval of
Upria in forward mode, while it is the fourth interval of vy,,.;4
in backward mode, as shown in Fig. 3. The inner phase shift 3
can be represented by d.

(Forward mode)

(14)
(Backward mode).
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Mode A is taken as a case study. Based on the abovementioned
voltage match (VM) principle, the asymmetrical duty cycle D is
always set as 1 — G*. According to the charge balance of C), 4,
the inductor current 4,4 at different instants is derived as

ipa(to) = Ip(D —2d — 4 + 4Dd + 4Dy — 2D?)
ipa(t1) = Ip(D — 2d + 4¢ + 4Dd — 4Dy — 2D?)
ipa(te) = Ip(D — 2d + 4 + 4Dd — 4Dy — 2D?)
ipa(ts) = Ip(D — 2d + 4Dd — 4Dy — 2D?)
ipa(ts) = Ig(D +2d — 4p — ADd + 4D — 2D?)
ipa(ts) = I5(2d — 3D — 4p — 4Dd + 4Dy + 6D?) (15)
where [ is defined as
Ip = ‘Z)z”f (16)

L., is the equivalent inductance of the coupled inductor on
each DAB module.

Through the integration of the product of vsc4 and i, 4, the
output power of the [IPOS-DAB converter can be derived

2 Ts _
PModeA = nT / Usec A (t)ZpA (t)dt
s Jo
= PbaseP]\*/[odeA (17)
where P, is defined as the base power
V2T
Prgse = 2= ° 18
P8 T 812 Loy (18)
and Py e 18 the normalized power of Mode A
. D —2d+ 4p +4Dd — 4Dy — 2D? — 4¢?
Pitogen = . (19)

1-D

The analysis of Modes B-F is similar. The normalized output
power expressions of the other modes are listed in (20), shown
at the bottom of this page. It can be found that the backward
mode is symmetrical with the forward mode in the power and
the inductor currents.

III. CONTROL STRATEGY

For the symmetrical characteristics of forward and backward
modes, the analysis in this section also focuses on the forward
mode of Module A.

IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 40, NO. 9, SEPTEMBER 2025

A. ZVS Analysis

ZNS condition of the converter should also be analyzed
separately according to the different modes. Mode A is taken
as an example for analysis. The ZVS condition of Mode A can
be derived as
Sy : ipA(t()) < —Tnin
SS,S : ipA(tl) + imA(tl) >
Sy ipA(tg) > Iin
Se.7 ipa(ts) +imalts) <
Sy : ipA(t4) > Tin
Sg, ZpA( ) < _Imin

I min

21
*Imin ( )

where I, is the minimum current to charge and discharge the
parasitic output capacitor C,s5 of MOSFETs on the primary and
secondary sides at switching instants, respectively, which can be
expressed as

Tinin = 2COSS’PVb2at/Leqa (S1234)
COSS:S‘/;J?JS/LECU (85678)-

The current expressions of Mode A are listed in (15), so the ZVS
condition of each switch can be expressed

(22)

. (2d — D)(QD B 1) Imin
529> A Dy i5(1-D)
6 oo (2d=D)1=2D) | Iy —im(t)

589 i(1- D) Al5(1— D)
S, - > (2d_D)(1_2D) Tin
Ly A(1- D) 4Ip(1- D) 23)
S - - > (2d_D)(2D_ 1) Imin+2m(t3)
67:% D AT D
S, - < (2d+D)(1_2D) N Imin
1Y A(1- D) Al5(1— D)
G .o (24-8D)(1-2D) Lin
31Y A(1- D) Alz(1-D)

ZVS conditions of the other modes can be derived using a
similar method. Thus, ZV'S condition can be plotted according to
 and d with a certain D. The ZVS condition when G* = 0.667
is plotted in Fig. 4 as an example. Fig. 4(a) shows the ideal
ZVS condition when C\s¢ and the magnetizing inductance are
neglected. As shown, there exist continuous full ZVS areas in
the plot.

To make the analysis accurate, C,ss and L,,, should be con-
sidered and the real ZVS condition is plotted in Fig. 4(b). The
regions of each mode are labeled.

&Y ModeA — (

Pioges = (D — 2d + 49 4+ 4Dd — 4Dy + 8pd — 2D?

—2d +4¢ +4Dd — 4Dy — 2D?

—4¢*)/(1 - D)

—4d* - 8¢%)/(1 - D)

Piodec = (—3D +2d — 4Dd + 4Dy + 2D? — 4¢? +1)/(1 — D)

Pitogen = (D — 2d + 4 +4Dd — 4Dy — 2D? — 4¢?) /(D — 1)

Pioger = (D — 2d + 4 +4Dd — 4Dy + 8¢d — 2D? — 4d* — 8¢?) /(D — 1)

Pioder = (—3D +2d — 4Dd + 4Dg + 2D? — 4¢? +1)/(D — 1). (20)
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Fig.4. ZVS condition versus ¢ and d when G* = 0.667. (a) Ideal ZVS range.

(b) ZVS range with C,55 and L, considered.

13721

0.6
*
ﬁ\
max
0.4
*
Ry
0.2
Pﬁ
¥ min
0
0 0.05 0'1 0.15 0'2 0.5 0.6 0.7 0.8 0.9 ]
@ G
(@ (b)

L 7 s —— = 025
04f5 07 /___,_—/ 0.2
03F=7" Partial ZV: 0.15
s .4 4 ] ~
=0.5 P =0.4
.2 - .
0 (Maxpoint) __ -=~ 0.1
A ¥
0.1~ _Optipetl Trajectory .~ = 0.05
- e
0== == 0
0 0.1 0.2 0.3 0 005 01 015 0.2
d 9
(@) (b)
Fig. 5. Optimal modulation trajectory of ¢ and d. (a) Real ZVS range with

normalized power contour lines. (b) Modulation trajectory under different gains.

B. Modulation Trajectory

According to (20), the normalized power contour lines are
plotted in Fig. 5(a) versus ¢ and d. Maximum power point is
also labeled, whose coordinates can be derived by

0 0

5 ( o (24)

ModeB) = D (Pitogen) = 0.
Maximum power point locates at (0.5D,0.25), where the
maximum power can be calculated
Py =(0.5—-D?%/(1- D). (25)
In this design, the rms inductor current is also minimized.
Thus, the modulation trajectory for d and ¢ should follow the
minimum ¢ point of every normalized power contour line within
the ZVS range. According to the ZVS range boundary and (20),
when 0 < D < 0.5, respectively, 0.5 < G* < 1, the modulation
trajectory for d and ¢ under a certain D can be derived as
d(p) = max [min (Fy, Fy) , F3, 0] (26)

where F} is the minimum ¢ point of contour lines in the Mode
B region. It can be derived by

( x;odeB)/d|‘;%:0 =0 27

SO

Fi(¢) = ¢ +0.5D —0.25 (28)

Fig. 6. Power characteristics of the designed modulation trajectory. (a) Trans-
fer power versus . (b) Operation range versus gain G*.

F5 and F3 are derived from the boundaries of the ZVS region.
They are expressed as

4(1 = D)(p — Ap) — Iniw/Ip + D — 2D?

Fa() = s 29)
41—-D — A@) — Iyin/Ip — D + 2D?
Fy(p) = DN B8 “ o/ In Z D220

where Ay is a margin for the phase shift ratio ¢ relative to
the ZVS boundary, which can be set smaller than 0.01 during
practical design. Meanwhile, the maximum and minimum values
for ¢ are

@min = Imin/[4IB(1 - D)] + A(p

Pmax = 0.25. 3D

Under conditions with different voltage gains, the trajectory
can also be derived with the abovementioned expressions. Tra-
jectories under conditions, G* = 1, G* = 0.8, and G* = 0.57,
are shown in Fig. 5(b). When G* = 0.5, the primary side op-
erates in the half-bridge SPS mode with matched voltage, and
the variable d does not influence the modulation. Therefore,
the modulation for G* = 0.5 is similar to the condition G* =1
whose d is always 0. The power transfer characteristics of the
hybrid modulation can be derived and plotted versus ¢ under
different gains in Fig. 6(a), by substituting (26) into (20). Since
each line has minimum and maximum P* values, the ZVS
power range of the proposed scheme versus gain G* is plotted
in Fig. 6(b).

To validate the extended ZVS range of the proposed modula-
tion strategy, a comparison is made with the conventional EPS
method [13], which also targets soft-switching enhancement.
Fig. 7 plots the ZVS load range of EPS under normalized power
(Pyase) and gain (G™), including MOSFET junction capacitance
(Coss) effects. Compared to Fig. 6(b), the proposed scheme
achieves a wider ZVS range—notably at gains deviating for
G =1.

C. Modulation Boundary of Coupled Inductor

With two inductor modulation modes, the coupled inductor
leads to two gears of equivalent series inductances, which greatly
influence the ZVS range and the rms inductor current. According
to the operation principle of the coupled inductor introduced in
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Fig. 8. Normalized rms inductor current of Modes I and II versus normalized
power P* with different G* and k. in 3-D plot. (a) k. = 0.45. (b) k. = 0.6.

Section II-C, the two equivalent inductances, Leqs and Leqgr 7, can
be designed by the self-inductance Lj, and coupling coefficient
ke.

With different coupling coefficients, the rms inductor currents
of the two inductor modes are plotted in Fig. 8. The rms inductor
current is calculated by

(32)

p_rms —

1 [

T /0 i2 4 (t)dt
where 5,4 is determined by control variables (D, ¢, and d). ¢
and d follow designed trajectory (26), and D satisfies (6). The

base power and current of Mode I are taken for plotting the
normalized current and power

Vi)?.lsTs
877,2 Leq[ ’

so the normalized values of Mode II should time a conversion
ratio o when plotting

VousTs
8nLeq I

Pbasef[ = Ibasef] = (33)

o Lqu o l+kc
Leq[[ 1_kc.

(34)

It can be easily found that Mode I with larger equivalent in-
ductance Ly takes advantage of rms current when the converter
operates at middle voltage gain and achieves an extended ZVS
range at light load. Meanwhile, Mode II with smaller equivalent
inductance Leqrr has rms current advantages at heavy load when
G™ is close to 0.5 or 1. Thus, the control boundary for Modes I
and IT according to P* and G* is shown in Fig. 9. The boundary
between Modes I and 1II is plotted with a dotted line, which is
solved by (20), (26), and (32). To simplify the calculation on
the controller, the fitted boundary is used to approximate the
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Fig.9. Coupledinductor modulation boundary of the converter. (a) k. = 0.45.
(b) k. = 0.6.
Vias— G -1 D
e G =Viu/(CnViar) | D=I-G
Viour bus! (. bar) L5,
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pwMm | S
T ¢ | Trajectory | d Unit L >,
Eq. (24) >S5
Ibal_ref + ¢B= .
Vius 4 —E) m ur ;E Pa —> Ssp
Viws 5 7+ Power Direction—>
Fig. 10. Control diagram of the hybrid modulation.

original boundary, which will be discussed in the next section
when the parameters of the coupled inductor and other necessary
parameters have been determined.

To summarize the control strategy, Fig. 10 shows the basic
control diagram of the hybrid modulation. As shown, Viys 4
and V4s_p are the output voltages of the two DAB modules
and Iy, ror 1s the reference current of the input battery current.
Duty cycle D is obtained through voltage match principle in (6).
To control the transfer power, respective to the battery current,
the outer phase shift ratio ¢ is obtained by the error between
Tat and Tyy of through PI controller. Besides, the error between
Vius_a and Vi p 1s calculated and passed through proportional
integral (PI) controller to achieve voltage balance between the
DAB modules. Variable d is calculated by (26) to follow the
designed trajectory. Meanwhile, the operation mode, selected
between Modes I and 11, is determined by P and G*.

IV. DESIGN CONSIDERATIONS

In this work, an IPOS-DAB prototype with parameters of
100 kHz, 2000 W, Vi,5¢ =200-400 V, and V4,,s =800 V is given
as a design example.

A. Transformer Turns Ratio

According to the previous analysis, each module of the con-
verter operates under hybrid modulation, including APWM and
PSM, and achieves an extended ZVS range and optimized rms
current over a wide normalized gain range, 0.5—1. The turns ratio
n of the transformer should be designed to match the real gain

Authorized licensed use limited to: ShanghaiTech University. Downloaded on June 27,2025 at 05:19:31 UTC from IEEE Xplore. Restrictions apply.



ZHANG et al.: WIDE VOLTAGE RANGE EFFICIENCY ENHANCEMENT SCHEME FOR IPOS DAB CONVERTERS IN 800V DC MICROGRIDS

L, 15uH,k =0

8§ — Leql=28”H’ kc=0.3
— L, ~40uH, k =045
—_— Leq ~00nH, k =0.6

0 500 1000

P (W)

1500 2000

Fig. 11.
300 V.

RMS inductor current comparison of the converter when V4,54 =

with the normalized operation range

Vius
_ _ Vbus > 05
2nvbat_max

‘/bus
a1 X
2n%at_min

fnin
(35)
:nax =

—

so the turns ratio n can be solved and equal to 2.

B. Coupled Inductor

The adaptive equivalent inductance of the modulated coupled
inductor further optimizes the rms current based on the hybrid
modulation Thus, the equivalent inductances of modes I and
II, Leqr, and Legrr, (or the self-inductance Ly and coupling
coefficient k) should be properly designed.

For Mode II with a smaller equivalent inductance, the advan-
tage range is wider when the gain is close to the two extreme
gain points, as shown in Fig. 9. Thus, Leqr; should be de-
signed to achieve optimized rms currents at G* = 0.5or G* = 1
conditions, where the converter operates under conventional
SPS modulation. Respectively, the outer phase shift ratio ¢ at
rated power should be minimized. In this design, the equivalent
inductance of Mode II can be calculated according to (18) and
shown as
ViusTs Py

rated — 15 NH

(36)
8nQP)ratecl

Leq[ 1=
where P, is the normalized power calculated by (20) when
¢ =0.04 and G* =1 (D = 0, respectively).

For Mode I, Leqr should be designed considering the rms
current when 0.5 < G* < 1. Therelationship between i), ;ms and
transfer power P with different equivalent series inductance can
be derived by solving (20), (26), and (32). Fig. 11 shows the rms
inductor current versus transfer power with different Leq; when
Vbat = 300 V (G* = 0.67). As L¢qys increases from 15 pH, the
rms current of full load decreases at first. However, if Leqr is
too large, the rms current of high load begins to increase for the
operation point of Mode I is close to the maximum power point.
Therefore, making a compromise for rms current over the entire
load, determining an optimal L.q; is a tradeoff. To optimize
quantitatively, a parameter A, which characterizes the utiliza-
tion of the circulating current in transferring active power is
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Fig. 12. Mean of A versus Leqr when Vi,ap = 300 V.
defined as
P
A= (37)

To characterize the current utilization within a load range, the
mean of A is derived as
X p—

1 P,
/ A(P, Leq)dP. (38)

P, — P Jp

The rms current ¢, .ms mainly influences the conduction loss and
switching loss of the DAB converter and these losses dominate
the efficiency at heavy load. Thus, 7;, s Will be optimized with
the load range from 1000 to 2000 W. Fig. 12 shows the A versus
Leqr. Numerical analysis shows that when Leq7 is near 40 pH,
the mean value of A reaches its maximum. Respectively, the
self-inductance Lj, and coupling coefficient k. of the coupled
inductor can be calculated

Ly, = (Leqr + Leqrr)/2 =27.5uH

ke =1— Leqr/Ly = 0.45. (39)

Fig. 13 compares rms inductor currents between the proposed
hybrid scheme and EPS modulation [13], evaluating two cases.
1) Coupled inductor: EPS with the identical coupled inductor
(current-optimized configuration). 2) Independent inductors:
EPS with L = 27.5 uH (average Leqr and Legrr). The proposed
scheme exhibits lower rms currents across a wide voltage gain
range.

C. Magnetizing Inductance

The magnetizing currents act as injection currents to achieve
the full load range ZVS for the secondary side switches. Thus, at
the switching instant of the secondary switches, the magnetizing
current should be larger than the minimum charging/discharging
current for switches’ C,ss, which is 95 pF according to the
datasheet of selected switches devices

‘/bUSTS
8nL,,

The maximum /,,;, appears when the converter operates in Mode
II with low equivalent inductance. Thus

T

8”\/ Coss,s/LquI

*Z‘m (tl) =

(40)

= Imin-

Ly <

= 250 uH. (41)
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Fig. 13.  RMS inductor current comparison between EPS and proposed hybrid
method. (a) Viat = 200 V. (b) V4t = 300 V. (¢) Vot = 400 V.

However, if the magnetizing inductance is too small, the rms cur-
rent of the secondary-side switches rises. Thus, the magnetizing
inductance is designed to be 250 pH.

D. DC Blocking Capacitor

The blocking capacitors, Cp4 and Cpp, hold a dc voltage
bias. Its peak value is 0.5Via max. Thus, their voltage rating
should be larger than 200 V. Besides, the capacitance should
be large enough to hold a relatively constant voltage when 4,4
and 7,,p charge or discharge them. The charge which inductor
current charges and discharges in a period can be expressed
approximately

Ts
Q=05 [ ligle)at @)
0

and the voltage ripple of the blocking capacitor can be expressed
as

Av =

20 (43)
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Fig. 14.  Coupled inductor modulation boundary of the converter expressed
with absolute power.

TABLE I
DESIGN PARAMETERS

Component Parameter
Primary voltage (Vpq+) 200-400 V
Secondary voltage (Vpys) 800 V
Rated power 2k W
Switching frequency (fs) 100 kHz
Blocking capacitor (Cpa & CpB) 12 uF
Turns ratio (1 : n) 16 : 32
Magnetizing inductance (L, 4 & L.yg) 250 pH
Self-inductance (L) 27.5 uH
Coupling coefficient (k.) 0.45

Q. reaches maximum value when V4, = 300 V and P =
2kW, and the maximum voltage ripple occurs. In this design,
to ensure that the voltage ripple is smaller than 1% of the peak
voltage bias, Cp4 and C)p are designed to be 12 uF.

E. Control Boundary

After determining the parameters of the coupled inductor,
transformers, and switches, the boundary between modes I and
II can be derived and shown in Fig. 14. The fitted expression of
the black dotted line is

P = (=37.78G"* +115.67G** — 133.69G*?

+68.94G* — 13.10) x 10™. (44)

Besides, Mode II exhibits a minimum boundary to satisfy
ZVS according to the analysis in Section III-B, shown as the
red dotted line in the figure. The operation points below this
boundary should operate in Mode I. It can be derived by the
@min in (31) and (20), where the margin Ay is set 0.005 in this
design.

V. EXPERIMENTAL RESULTS

To verify the effectiveness of the proposed modulation
scheme, a 2-kW prototype of the [IPOS-DAB converter with
a coupled inductor is built. Fig. 15 shows the picture of the
prototype. The key parameters of the prototype are listed in
Table I. MOSFETs of 650V-rated silicon carbide (SiC) are se-
lected for switches and X7R multilayer ceramic capacitors are
selected for the blocking capacitors. It should be noted that the
leakage inductances of the two transformers are minimized when
building them.
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Fig. 15.  Prototype of designed IPOS-DAB converter with coupled inductor.
- | { | Vopa ‘(ZSOV/dlv} ‘ - F_—Li,m (250V/div)
L L W T
o | Vyeen (S00V/div) | o et (S00V/div)
T L GRaw| S . irs (10A/div) |
et e ’—* e .M\ e it
o 1 ,,(M/d,‘) U [T i (10A7div) |
t (4p.s/d|v) t (4us/d|v)
e e =T = 7 L e e e . o
(@) (b)
Fig. 16. Experimental waveforms when V},,; = 200 V with forward power.

(a) Light load (P = 400 W). (b) Heavy load (P = 2kW).
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Fig. 17.
(a) Light load (P = 400 W). (b) Heavy load (P = 2kW).
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Fig. 18.  Experimental waveforms when V},,¢ = 400V with forward power.

(a) Light load (P = 400 W). (b) Heavy load (P = 2kW).

Experimental waveforms when V4,51 = 300 V with forward power.
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Fig. 19.  Experimental waveforms when V},,¢ = 200 V with backward power.
(a) Light load (P = 400 W). (b) Heavy load (P = 2kW).
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Fig.20. Experimental waveforms when V},,¢ = 300 V with backward power.

(a) Light load (P = 400 W). (b) Heavy load (P = 2kW).
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Fig.21.  Experimental waveforms when V4,5 = 400 V with backward power.

(a) Light load (P = 400 W). (b) Heavy load (P = 2kW).

Figs. 16—-18 show the steady-state waveforms when the con-
verter operates in forward mode with different input voltage
Vhbat- Figs. 16 and 18 show that the primary and secondary sides’
voltages completely match and the modulation is identical to
SPS with trapezoidal current waveforms when the input voltage
is 200 V or 400 V. The converter operates in Mode I at light load
(P = 400 W) with paralleled inductor current waveforms, 4,4
and i, 3, and in Mode II at heavy load (P = 2kW) with contrary
inductor current waveforms, matching the mode boundary, as
shown in Fig. 14. The normalized gains G* of the two conditions
are 1 and 0.5, respectively. Fig. 17 shows that when the input
voltage is 300 V and the primary and secondary sides’ voltages
do not completely match, the converter operates in Mode I
within the full load range and matches the mode boundary. The
light-load waveforms in Fig. 17(a) match the Mode A, as shown
in Fig. 3(a), while the heavy-load waveforms in Fig. 17(b) match
the Mode B, as shown in Fig. 3(b), for the modulation trajectory
in Section III-B is taken.

Besides, Figs. 19— 21 plot the steady-state waveforms when
the converter operates in backward mode. Figs. 19 and 21 show
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Fig. 23.  Mode switching waveforms when V4,51 = 200 V. (a) Mode I to II.
(b) Mode I to 1.

that when the input voltage is 200 V or 400 V the converter also
operates as an SPS modulation. Mode I is taken at light load and
Mode Il is taken at heavy load. Fig. 20 shows that when the input
voltage is 300 V the converter operates in Mode I within the full
load range and matches the mode boundary in Fig. 14. Light-
load waveforms in Fig. 20(a) match Mode D in Fig. 3(d) and
heavy-load waveforms in Fig. 20(b) match Mode E in Fig. 3(e),
for the modulation of backward power is symmetrical to the
forward modulation.

The ZVS waveforms of module A are plotted in Fig. 22, when
Vbat = 300V and P = 400 W. An apparent gap exists between
every rising edge of vy, and the corresponding falling edge of
vgs- Fig. 22(a) and (b) shows that all MOSFETs on the primary side
achieve ZVS. Fig. 22(c) shows that the low-side MOSFETs on the
secondary side also achieve ZVS, which dedicates the secondary
side achieves ZVS. Owing to the symmetric modulation on mod-
ule B, the ZVS characteristic of module B is identical to module
A. The converter is proven to achieve ZVS soft-switching when
the primary and secondary sides’ voltages do not completely
match. Thus, the light-load ZVS of the converter can be achieved
over the wide voltage range.

Load switching waveforms for Vj,z = 200V-400V are
shown in Figs. 23-25. Mode transitions between I/I occurs
at Vpat = 200V and Vi, = 400V per the boundary control
in Fig. 14, while the converter remains in Mode I at 300 V.
Key observations include: 1) No significant voltage spikes occur
during mode transitions; 2) Smooth current transitions at 200 V
and 300V operation; and 3) Elevated currents at 400V due
to dec-block capacitor charge/discharge dynamics and voltage
mismatch.

Fig. 24. Mode switching waveforms when V4,51 = 400 V. (a) Mode I to II.
(b) Mode I to 1.
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Fig. 25. Load switching waveforms when V4,51 = 300 V. (a) Light load to
heavy load. (b) Heavy load to light load.
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Fig. 26. Measured efficiency versus transfer power under different Vi,,¢.

(a) Forward mode. (b) Backward mode.

Fig. 26 shows the efficiency curves for different input voltages
in forward and backward modes. The converter’s loss breakdown
under various loads and battery voltages is analyzed and plotted
in Fig. 27. Here, Pr .o, and Py, .}, denote the copper losses of
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TABLE II
COMPARISONS OF EXISTING WORKS
Converter Additional hardware Modulation rms current ZVS range Input/Output Power Efficency
per module voltage level
EPS Reduced .
DAB [13] None (Simple) (SPS compared) Medium 600V/300-600V 10kW 79-92%
. EPS Reduced .
DAB [16] One capacitor (Simple) (SPS compared) Wide 200V/100-400V 1kW 92-98.1%
. APWM+SPS Reduced
DAB [22] One capacitor (Simple) (EPS compared) Narrow 100-200V/300V 500W 91-97.9%
. AEPS+TPS Reduced .
DAB [23] One capacitor (Complex) (TPS compared) Wide 380-420V/40-56V S5kW 93.7-97.7%
DAB with VI Auxiliary winding SPS Reduced .
(variable inductor) [28] with current bias (Simple) (SPS compared) Wide 100V/30-100v 400w 88-92%
ISOP DAB with Hybrid SPS Reduced .
coupled inductor [26] None (Simple) (SPS compared) Wide 800V/380-420V Zkw 91.5-97%
This work One capacitor Am’x;; 1;13)1\/1 (Epgi‘é‘iggjﬁ " Wide 200-400V/800V  2kW  96-98.3%
50 additional switch losses are marginal, and efficiency remains
0 300v P, high (> 96.0%).
o . . . .
200V. ] PT_' ’ Fig. 28 compares efficiencies of the proposed hybrid mod-
ron .
S 30 d00v - ulation and EPS at Vi, = 300V and 400 V. At Vi, = 200V,
E - PL cop . . . . .
z . - both schemes operate identically in SPS mode, yielding matched
20 300V = o efficiencies. Results demonstrate superior performance of the
10 200 400y Psw-“ﬂ proposed method across the tested load range, particularly at
1| ... Vit = 400V
bat — .
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Fig. 27. Loss breakdown under different loads with different V4, ,¢.
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Fig.28. Efficiency comparison between EPS modulation and proposed hybrid
modulation scheme in forward mode. (a) Vi, = 300 V. (b) Vi = 400 V.

the transformers and the coupled inductor, respectively, while
Pr ivon and Pr,_jyon represent the iron losses. Psy, . is the switch
conduction loss and Py off is the turn-OFFloss. The turn-ON loss
is negligible due ZVS soft-switching. At light load, magnetic
losses dominate, whereas switch losses prevail at heavy load.
For Vpat = 200V and Vy,a¢ = 400 V, the converter operates in
SPS modulation with matched voltages, yielding lower con-
duction and turn-OFFloss losses, as well as higher efficiency
than the Vi, = 300V case due to reduced current stress. In
addition, the Vj,; = 400V condition exhibits lower turn-OFF
loss than V4, = 200V, enhancing the efficiency, since half of
the primary-side MOSFETs remain either ON or OFF. The peak
efficiency is 98.3% in forward mode and 98.2% in backward
mode, Although efficiency drops slightly for V.4 = 300V, the

Comparisons between the proposed hybrid modulation
scheme and existing methods are presented in Table II. The
proposed hybrid scheme offers a wide voltage gain, extends the
ZVS range, and reduces the rms current across the entire load
range without requiring additional active circuits or complex
control strategies.

VI. CONCLUSION

In this article, we propose a hybrid modulation scheme for
an adaptive coupled-inductor-based IPOS-DAB converter for
energy storage integrated dc microgrids with a wide voltage
gain range. The scheme consists of APWM, PSM, and coupled
inductor modulation. APWM adjusts the voltages of the dc
blocking capacitors to achieve voltage match of the primary
and secondary sides. With the phase shifts, the ZVS range is ex-
panded over a wide voltage range. Besides, the coupled inductor
modulation further optimizes the rms current with self-adaptive
equivalent inductances. Operational principles of the modula-
tion, control strategy, and design considerations are analyzed
in detail. Finally, a 2-kW prototype linking 200-400 V battery
modules and an 800 V dc bus is built to validate the concepts.
The experimental steady-state waveforms, ZVS waveforms, and
efficiency curves are illustrated. The prototype achieves a peak
efficiency of 98.3% and keeps the efficiency above 96.0% within
above 20% load range.
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