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Abstract—Power electronic converters are periodic time-variant sys- 1 C IR
tems, because of their switching operation. The generalized state-space
averaging method is a way to model them as time independent systems, -

defined by a unified set of differential equations, capable of represent-

ing circuit waveforms. Therefore, it can be a convenient approach for Fig. 1. Buck converterl, =20V, R =10Q, L = 1 mH, C' = 10 uF,
designing controllers to be applied to switched converters. This brief 75 = 0.1 ms).

shows that the generalized state-space averaging method works well only

within specific converter topologies and parametric limits, where the . . . Lo .
model approximation order is not defined by the topology number of state variable waveforms without discontinuities. In this case, the

components. This point is illustrated with detailed examples from several Circuit state variables, i.e., capacitor voltages and inductor currents,
basic dc/dc converter topologies. meet the constraint imposed by continuity property that provides
Index Terms—Generalized state-space averaging, power converter bounded capacitor currents and inductor voltages [6] and [7]. From
modeling. the topological point of view, it means that there are no degenerate
all ¢ and/or degenerate all cut-sets in the converter circuit
graph [8]. Therefore, analysis of converters with ideal switches and
. INTRODUCTION parasitic components (capacitors or inductors) forming loops must be
Power electronic converters are mostly periodic variable structusensidered with more care. With the generalized state-space averaging
systems, due to their switched operation. The state-space continususthod, the circuit state variables are approximated by a Fourier
time modeling of a switched converter, over a switching pefibd series expansion with time-dependent coefficients. This representation
with a duty-ratiod, requires two sets of differential equations: oneesults in an unified time-invariant set of differential equations where
set describes the circuit operation durid@; time interval, when the state variables are the coefficients of the corresponding Fourier
the switches are on, and the other set to when the switches are sffiies of the circuit state variables. Thus, the greater the order
during (1 — d)T time interval. During each switch state the circuiof harmonics described in the model, the closer the results will
behaves as a linear circuit provided tie L, and C' elements are be to the exact topological state-space solution. In practice, some
linear. In this case, both sets of state-space differential equati@splifying assumptions can be considered in order to reduce the
correspond to the exact topological model of the circuit behavior oveumber of Fourier terms, and hence, to simplify the calculations.
a switching periodl’;. Nevertheless, in order to design regulators fofhe generalized state-space averaging method has already been used
switched converters and to study their stability limits, it is desirable the modeling of some switched power converters [9], however a
to obtain a unified state-space model description for these convertéetter understanding on this method is still required. In this paper,
valid for the entire switching period;. For this purpose, the state-the generalized state-space averaging model is applied to the basic
space averaging method was proposed in [1], and it has been useddfic topologies, such as the Buck, Boost, Buck-Boost, and Cuk.
many power converters such as [2] and [3]. Reference [4] showed thienulation results are obtained and compared to the exact topological
effectiveness and simplicity of this method for PWM dc/dc convertestate-space model. It is assumed that all the converters shown here are
design. This method has been proved to be very useful when thgerating in continuous conduction mode with switching frequency
circuit state variables have small variations around the operatifhg and duty-ratiod. It can be seen that some parameter variations,
point. This condition means that, during an arbitrary period of timsuch as the usual duty-ratio control, will influence the performance
the dc term should be the dominant component when a Fouridrthese models. State-space averaging model results are also shown.
series expansion is applied to a circuit state variable wavefor@omparison of above mentioned averaging methods is also presented.
Consequently, this approach is not suitable for modeling converters
which have dominant oscillatory behavior, such as the resonant Il. ANALYSIS OF BAsic DC/DC CONVERTERS
type converters or large ripple PWM converters. The generalized
state-space averaging method [5] is defined to provide a mte Buck Converter

general state-space average model, capable of representing circuﬁg. 1 shows the Buck converter. To apply the generalized state-
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Nevertheless, in the set of equations of the generalized state- o duty-ratio = 0.25
space average model, the actual state-space variables are the Fourier os}
coefficients of the circuit state variables which are, in this casand o7 ]
v,. Using the first-order approximation to obtain andv,, one has
[o 0 : §
i, ={iry_1e 7+ (ir)o + (in) e’ (©)] __os}
Vo = (Ba)m1 7T 4 (0o + (va)r1 6! (4) So. / A
wherew is the fundamental frequency and 03 ~ Noporogtent
{ 1st order ologica
<iL>1 =1 +jil,'2, (ij_,>0 = a5 02 approximation
(Vo)1 =3 + ja, (vo)o = ws. (5) o1
. . 00 0.2 0.4 0.8 0.8 1
Sincei;, andv, are real, t(s) x 107
(in)—1 = (L)1, (vo)—1 = (vo)1 (6) @
where the operator * means the conjugate of a complex number. By 6 97929 2
applying the time derivative property of the Fourier coefficients in (2), \/\/\[
and further substituting the Fourier coefficients of the commutation 5 / \/\/\/\/\
function (¢
( ) 1 ; 4 \1st order
(o = . (u)y = sin 27d +]§c0s 2rd — 1) @ 23 approxdmation
T 3
one comes to n|
- -1 -
0 w 0 0 0
L _1 1
3‘31 —w 0 0 T 0 0 T
2 1 0 -1 ) 0 0 T2 % 0.2 0.4 ¢ o 0.8 o8 K
,l,g _ E ﬁ w X3 s x 107
ia 0 1 —w -1 0 0 T4 (b)
o5 ¢ RC -1 | [* Fig. 2. Simulation of (a),(t) and (b)v,(t), whend = 0.25, by the exact
L6 o 0 0 0 0 — | L topological model and first-order approximation.
1 -1
0 0 0 0 = —
T sin 27d . ¢ RC- averaging model. This fact is explained as follows. From (8) the
Tonl zero-order terms are described as
—sin? wd R . 1 d_ . 1 1
L Vin Ts = _Z»r()‘ + Z‘/inv Te = 6375 - ﬁro (11)
0 8 o .
ereas for the case of the state-space averaging model, it can
+ . ®  Whereas for th f the stat del, it
d v be shown that
7 - 1., d . 1 1
I, ===Vo+ =Vin, Vo==IL— ==V, 12
L 0 J L 7 Vo + 7V, ol - we (12)

where Vi, is a constant. Equation (8) is the generalized state-spagRerel; andV, are the moving average valuesiof(t) andw,(t),
averaged model of the Buck converter (Fig. 1). The circuit statespectively. It can be seen that the sets (11) and (12) are identical.
variables are calculated and given by The steady-state average values are also the same, and they depend
only on the duty-ratio [10]. Nevertheless, this does not happen for
other converters, as it will be shown later in the case of the buck-
boost converter. By looking at Figs. 2 and 3, one can see that the
first-order approximation is better wheh= 0.5. This fact will be
?Haained in the next sections.

1, = a5 + 221 cos wt — 2x9 sin wt 9)

Vo =g + 223 cos wt — 2x4 sin wt. (20)

Fig. 2 showsi; (¢) andwv,(t) when the duty-ratial is 0.25, using
the exact topological model and the generalized state-space avera&
model. In Fig. 2(a) and (b) the first-order approximation is used, as
given by (9) and (10). If the second-order approximation is used, tRe BOOSt Converter
corresponding model matrix will have 10 real state variables. IndeedFig. 4 shows the Boost converter. Using first-order approximation,
the use of higher order approximations improves the model accuraapd the same procedure as applied to the Buck conveérter, and
though at the expense of more complexity in the calculations. Figx3(¢) can be calculated, and these results are shown in Fig. 5. In this
shows the exact topological model together with the first-order afigure, the topological and the first-order approximation models are
zero-order approximation results for(¢#) andwv,(¢) when the duty- presented for the case whédn= 0.25. Here also, it can be verified
ratio d is 0.5 [Fig. 3(a) and (b)]. The zero-order approximationthat the best approximation occurs whéer= 0.5. It can be seen that
correspond to the Fourier series dc componerisand s, of the the voltagev.(t), as given by the topological model, presents more
circuit state variableg; andv,, respectively. The componenis harmonic content (sharp peaks) than in Figs. 2 and 3. Therefore,
andxs are also referred as the corresponding moving averages of the first-order approximation in the previous(t) (Figs. 2 and 3)
currenti, (t) and the voltage.(t). In this converter the simulation was better. In this case, the generalized state-space averaged model
results show that there is no difference between the moving averaggsations have more coupling terms between the state variables than
provided by the zero-order approximation and by the state-spang8), and this accounts for more complexity in the system equations.
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Fig. 3. Simulations by using the exact topological model, zero-order afd- 5. Boost Converter simulation: topological and first-order approxima-
first-order approximations when (a) and ()= 0.5. tion models.
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Fig. 6. Buck-boost converted{, =20V, R =10Q,L =1 mH,C =

. i 10 uF, T, = 0.1 ms).
Fig. 4. Boost converterlf,, = 20V, R = 10Q, L = 1 mH,C = 10
uF, Ty = 0.1 ms). . . .
and =, (first-order terms) are negligible. This happens when the
C. Buck-Boost Converter switching frequencyt /T is sufficiently high [10]. As in the previous

gonverters, it can also be seen here that, wiiea 0.5 the model
simulated waveforms af, () and—w, (#) are presented. Fig. 7(a) andreSUItS show better approximation. Moreover, the curfg(t) shows

7(b) show the results of the topological and first-order approximatiéﬂore s_harp_ pea_ks than the voltagét). Consequently, the first-order .
models wheni = 0.25. In Fig. 7(c) and (d), the topological model’apprommatlon is better for the voltage than for the current. This

- . fact can be explained as follows. For a properly designed converter
the first-order, zero-order and the state-space averaging models argratin in continuous conduction mode. it is necessary that the
presented wher = 0.5. It can be seen that there is a differenc&P 9 ' y

awitching period be much smaller than the circuit time constants

The Buck-Boost converter is shown in Fig. 6. In Fig. 7, th

between the zero-order and the state-space averaging approximatigns. L . - . .
: . . . ow-pass filtering condition). This results in a triangular wave shape
In fact, the Fourier zero-order expansion gives a more precise mov

average of a state variable. In fact, it can be shown that the settﬁg the mc_itucr;t?r clurrerlltt andﬂa_p;)egetvk\:ls?: qur?drratl?i wavfe Szaz? for
generalized state-space averaging equations gives 1€ capacitor rippie voltage. i = 1.5 the Fourier series of periodic
o o, signals contains only odd harmonics. For the triangular function the
_sin 2wd 2 sin” wd 1-d d., third harmonic is 1/9th the amplitude of the fundamental while for
T3 + T4 + T + "m (13) . . . -
wL wL L L the quadratic function this ratio is 1/27. Therefore, whes 0.5 a
where x5 and xs are the moving average of.(¢) and v.(¢t), better approximation for the voltage state variable is obtained [7].

respectively. For the case of the state-space averaging model, the

T5 =

moving averagé/, of the voltagewv,(t) is obtained as D. Cuk Converter
I, = 1- dVO + (—IVin. (14) In_ the case of the Cuk converter (F_ig. 8), the fi_rst-order e_lpproxi-
L L mation produces twelve real state variables. In Fig. 9 the simulated

Hence, (13) and (14) show that both methods provide differeatitput voltage—v,(¢) waveforms, by the first-order and exact topo-
moving averages, as well as different steady-state average vallegical models, are presented fdr= 0.25. The results from both
However, V,, is approximately equal tacs when the termszs  models are coincident. Though the Cuk converter is apparently more
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Fig. 7. Buck-boost converter simulation results by the (a), (b) exact topo-
logical and first-order approximately, and (c), (d) the state-space averaged,
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zero-order, exact topological and first-order modeling methods.

complex than the previous ones, in terms of number of componentg
the first-order approximation can suit well provided the low-pass

filtering condition, is met.

In this brief, the generalized state-space averaging method wad
applied to the basic dc/dc single-ended topologies. Simulation results
were compared to the exact topological state-space model and to fthg
well-known state-space averaging method. It becomes evident that

CONCLUSION
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Fig. 8. Cuk converter.
20
10} (\ / (\ [ '\
§ 5 l \ | \ \/\
g b \/ ¥
-0 0.008 0.01 0.018 .02

t (s)

Fig. 9. Cuk converterl(, =20V, R = 102, C1 = 220 uF, C2 = 200
puF, L1 = 180 pH, L2 = 150 ¢H, T, = 0.1 ms). Simulated output voltage
—v,(t) whend = 0.25.

when the switching frequency is not much higher than the converter
natural frequencies, the approximation order is an important factor in
improving the model accuracy, though at the expense of increasing
the calculations. A detailed analysis is shown regarding the influence
of the switching frequency on the moving average obtained from
the generalized state-space averaging and the state-space averaging
methods. It can be observed that, the results of the generalized
state-space averaged model with first-order approximation are closer
approximations of the corresponding ones of the topological model,
when the duty-ratio is around 0.5 (absence of even harmonics) and
for specific state variables. It can also be seen that, the topology com-
plexity, in terms of number of components, does not determine the
approximation order for a satisfactory model. Since this method can
provide a unified time-invariant state-space model of the converters,
a software like Matlab can be used for controller design and stability
analysis.
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