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Analysis of Power Electronic Converters Using the
Generalized State-Space Averaging Approach

J. Mahdavi, A. Emaadi, M. D. Bellar, and M. Ehsani

Abstract—Power electronic converters are periodic time-variant sys-
tems, because of their switching operation. The generalized state-space
averaging method is a way to model them as time independent systems,
defined by a unified set of differential equations, capable of represent-
ing circuit waveforms. Therefore, it can be a convenient approach for
designing controllers to be applied to switched converters. This brief
shows that the generalized state-space averaging method works well only
within specific converter topologies and parametric limits, where the
model approximation order is not defined by the topology number of
components. This point is illustrated with detailed examples from several
basic dc/dc converter topologies.

Index Terms—Generalized state-space averaging, power converter
modeling.

I. INTRODUCTION

Power electronic converters are mostly periodic variable structure
systems, due to their switched operation. The state-space continuous-
time modeling of a switched converter, over a switching periodTs

with a duty-ratiod; requires two sets of differential equations: one
set describes the circuit operation duringdTs time interval, when
the switches are on, and the other set to when the switches are off,
during (1 � d)Ts time interval. During each switch state the circuit
behaves as a linear circuit provided theR, L, andC elements are
linear. In this case, both sets of state-space differential equations
correspond to the exact topological model of the circuit behavior over
a switching periodTs. Nevertheless, in order to design regulators for
switched converters and to study their stability limits, it is desirable
to obtain a unified state-space model description for these converters,
valid for the entire switching periodTs: For this purpose, the state-
space averaging method was proposed in [1], and it has been used in
many power converters such as [2] and [3]. Reference [4] showed the
effectiveness and simplicity of this method for PWM dc/dc converter
design. This method has been proved to be very useful when the
circuit state variables have small variations around the operating
point. This condition means that, during an arbitrary period of time,
the dc term should be the dominant component when a Fourier
series expansion is applied to a circuit state variable waveform.
Consequently, this approach is not suitable for modeling converters
which have dominant oscillatory behavior, such as the resonant
type converters or large ripple PWM converters. The generalized
state-space averaging method [5] is defined to provide a more
general state-space average model, capable of representing circuit
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Fig. 1. Buck converter (Vin = 20 V, R = 10 
, L = 1 mH,C = 10 �F,
Ts = 0.1 ms).

state variable waveforms without discontinuities. In this case, the
circuit state variables, i.e., capacitor voltages and inductor currents,
meet the constraint imposed by continuity property that provides
bounded capacitor currents and inductor voltages [6] and [7]. From
the topological point of view, it means that there are no degenerate
all C and/or degenerate allL cut-sets in the converter circuit
graph [8]. Therefore, analysis of converters with ideal switches and
parasitic components (capacitors or inductors) forming loops must be
considered with more care. With the generalized state-space averaging
method, the circuit state variables are approximated by a Fourier
series expansion with time-dependent coefficients. This representation
results in an unified time-invariant set of differential equations where
the state variables are the coefficients of the corresponding Fourier
series of the circuit state variables. Thus, the greater the order
of harmonics described in the model, the closer the results will
be to the exact topological state-space solution. In practice, some
simplifying assumptions can be considered in order to reduce the
number of Fourier terms, and hence, to simplify the calculations.
The generalized state-space averaging method has already been used
in the modeling of some switched power converters [9], however a
better understanding on this method is still required. In this paper,
the generalized state-space averaging model is applied to the basic
dc/dc topologies, such as the Buck, Boost, Buck-Boost, and Cuk.
Simulation results are obtained and compared to the exact topological
state-space model. It is assumed that all the converters shown here are
operating in continuous conduction mode with switching frequency
Ts and duty-ratiod. It can be seen that some parameter variations,
such as the usual duty-ratio control, will influence the performance
of these models. State-space averaging model results are also shown.
Comparison of above mentioned averaging methods is also presented.

II. A NALYSIS OF BASIC DC/DC CONVERTERS

A. Buck Converter

Fig. 1 shows the Buck converter. To apply the generalized state-
space averaging method, first a commutation functionu(t) is defined
in (1). This function depends on the circuit switching control, which
determines when the circuit topology changes according to time.
The unified set of circuit state variable equations (2) is obtained
by applying (1) to the two sets of topological circuit state-space
equations.

u(t) =
1; 0<t<dTs

0; dTs<t<Ts
(1)

diL

dt
=

1

L
(Vinu(t)� vo)

dvo

dt
=

1

C
iL �

vo

R
: (2)
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Nevertheless, in the set of equations of the generalized state-
space average model, the actual state-space variables are the Fourier
coefficients of the circuit state variables which are, in this case,iL and
vo: Using the first-order approximation to obtainiL andvo; one has

iL = hiLi�1e
�j!t

+ hiLi0 + hiLi1e
j!t (3)

vo = hvoi�1e
�j!t

+ hvoi0 + hvoi1e
j!t (4)

where! is the fundamental frequency and

hiLi1 =x1 + jx2; hiLi0 = x5

hvoi1 =x3 + jx4; hvoi0 = x6: (5)

Since iL and vo are real,

hiLi�1 = hiLi
�

1; hvoi�1 = hvoi
�

1 (6)

where the operator * means the conjugate of a complex number. By
applying the time derivative property of the Fourier coefficients in (2),
and further substituting the Fourier coefficients of the commutation
function u(t)

hui0 = d; hui1 =
sin 2�d+ j(cos 2�d� 1)

2�
(7)

one comes to
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(8)

whereVin is a constant. Equation (8) is the generalized state-space
averaged model of the Buck converter (Fig. 1). The circuit state
variables are calculated and given by

iL =x5 + 2x1 cos !t� 2x2 sin !t (9)

vo =x6 + 2x3 cos !t� 2x4 sin !t: (10)

Fig. 2 showsiL(t) andvo(t) when the duty-ratiod is 0.25, using
the exact topological model and the generalized state-space averaging
model. In Fig. 2(a) and (b) the first-order approximation is used, as
given by (9) and (10). If the second-order approximation is used, the
corresponding model matrix will have 10 real state variables. Indeed,
the use of higher order approximations improves the model accuracy,
though at the expense of more complexity in the calculations. Fig. 3
shows the exact topological model together with the first-order and
zero-order approximation results foriL(t) andvo(t) when the duty-
ratio d is 0.5 [Fig. 3(a) and (b)]. The zero-order approximations
correspond to the Fourier series dc components,x5 and x6; of the
circuit state variablesiL and vo, respectively. The componentsx5
andx6 are also referred as the corresponding moving averages of the
currentiL(t) and the voltagevo(t): In this converter the simulation
results show that there is no difference between the moving averages
provided by the zero-order approximation and by the state-space

(a)

(b)

Fig. 2. Simulation of (a)iL(t) and (b)vo(t), whend = 0.25, by the exact
topological model and first-order approximation.

averaging model. This fact is explained as follows. From (8) the
zero-order terms are described as

_x5 = �
1

L
x6 +

d

L
Vin; _x6 =

1

C
x5 �

1

RC
x6: (11)

Whereas for the case of the state-space averaging model, it can
be shown that

_IL = �
1

L
Vo +

d

L
Vin; _Vo =

1

C
IL �

1

RC
Vo (12)

whereIL andVo are the moving average values ofiL(t) andvo(t),
respectively. It can be seen that the sets (11) and (12) are identical.
The steady-state average values are also the same, and they depend
only on the duty-ratio [10]. Nevertheless, this does not happen for
other converters, as it will be shown later in the case of the buck-
boost converter. By looking at Figs. 2 and 3, one can see that the
first-order approximation is better whend = 0.5. This fact will be
explained in the next sections.

B. Boost Converter

Fig. 4 shows the Boost converter. Using first-order approximation,
and the same procedure as applied to the Buck converter,iL(t) and
vo(t) can be calculated, and these results are shown in Fig. 5. In this
figure, the topological and the first-order approximation models are
presented for the case whend = 0.25. Here also, it can be verified
that the best approximation occurs whend = 0.5. It can be seen that
the voltagevo(t); as given by the topological model, presents more
harmonic content (sharp peaks) than in Figs. 2 and 3. Therefore,
the first-order approximation in the previousvo(t) (Figs. 2 and 3)
was better. In this case, the generalized state-space averaged model
equations have more coupling terms between the state variables than
in (8), and this accounts for more complexity in the system equations.
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(a)

(b)

Fig. 3. Simulations by using the exact topological model, zero-order and
first-order approximations when (a) and (b)d = 0.5.

Fig. 4. Boost converter (Vin = 20 V, R = 10 
, L = 1 mH, C = 10
�F, Ts = 0.1 ms).

C. Buck-Boost Converter

The Buck-Boost converter is shown in Fig. 6. In Fig. 7, the
simulated waveforms ofiL(t) and�vo(t) are presented. Fig. 7(a) and
7(b) show the results of the topological and first-order approximation
models whend = 0.25. In Fig. 7(c) and (d), the topological model,
the first-order, zero-order and the state-space averaging models are
presented whend = 0.5. It can be seen that there is a difference
between the zero-order and the state-space averaging approximations.
In fact, the Fourier zero-order expansion gives a more precise moving
average of a state variable. In fact, it can be shown that the set of
generalized state-space averaging equations gives

_x5 = �
sin 2�d

�L
x3 +

2 sin2 �d

�L
x4 +

1� d

L
x6 +

d

L
Vin (13)

where x5 and x6 are the moving average ofiL(t) and vo(t),
respectively. For the case of the state-space averaging model, the
moving averageVo of the voltagevo(t) is obtained as

_IL =
1� d

L
Vo +

d

L
Vin: (14)

Hence, (13) and (14) show that both methods provide different
moving averages, as well as different steady-state average values.
However, Vo is approximately equal tox6 when the termsx3

(a)

(b)

Fig. 5. Boost Converter simulation: topological and first-order approxima-
tion models.

Fig. 6. Buck-boost converter (Vin = 20 V, R = 10 
, L = 1 mH, C =

10 �F, Ts = 0.1 ms).

and x4 (first-order terms) are negligible. This happens when the
switching frequency1=Ts is sufficiently high [10]. As in the previous
converters, it can also be seen here that, whend = 0.5 the model
results show better approximation. Moreover, the currentiL(t) shows
more sharp peaks than the voltagevo(t): Consequently, the first-order
approximation is better for the voltage than for the current. This
fact can be explained as follows. For a properly designed converter
operating in continuous conduction mode, it is necessary that the
switching period be much smaller than the circuit time constants
(low-pass filtering condition). This results in a triangular wave shape
for the inductor current and a piecewise quadratic wave shape for
the capacitor ripple voltage. Ifd = 0.5 the Fourier series of periodic
signals contains only odd harmonics. For the triangular function the
third harmonic is 1/9th the amplitude of the fundamental while for
the quadratic function this ratio is 1/27. Therefore, whend = 0.5 a
better approximation for the voltage state variable is obtained [7].

D. Cuk Converter

In the case of the Cuk converter (Fig. 8), the first-order approxi-
mation produces twelve real state variables. In Fig. 9 the simulated
output voltage�vo(t) waveforms, by the first-order and exact topo-
logical models, are presented ford = 0.25. The results from both
models are coincident. Though the Cuk converter is apparently more
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Fig. 7. Buck-boost converter simulation results by the (a), (b) exact topo-
logical and first-order approximately, and (c), (d) the state-space averaged,
zero-order, exact topological and first-order modeling methods.

complex than the previous ones, in terms of number of components,
the first-order approximation can suit well provided the low-pass
filtering condition, is met.

III. CONCLUSION

In this brief, the generalized state-space averaging method was
applied to the basic dc/dc single-ended topologies. Simulation results
were compared to the exact topological state-space model and to the
well-known state-space averaging method. It becomes evident that

Fig. 8. Cuk converter.

Fig. 9. Cuk converter (Vin = 20 V, R = 10 
, C1 = 220�F, C2 = 200
�F, L1 = 180�H, L2 = 150�H, Ts = 0.1 ms). Simulated output voltage
�vo(t) when d = 0.25.

when the switching frequency is not much higher than the converter
natural frequencies, the approximation order is an important factor in
improving the model accuracy, though at the expense of increasing
the calculations. A detailed analysis is shown regarding the influence
of the switching frequency on the moving average obtained from
the generalized state-space averaging and the state-space averaging
methods. It can be observed that, the results of the generalized
state-space averaged model with first-order approximation are closer
approximations of the corresponding ones of the topological model,
when the duty-ratio is around 0.5 (absence of even harmonics) and
for specific state variables. It can also be seen that, the topology com-
plexity, in terms of number of components, does not determine the
approximation order for a satisfactory model. Since this method can
provide a unified time-invariant state-space model of the converters,
a software like Matlab can be used for controller design and stability
analysis.
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