# EE270: Homework 2

Due: Oct. 31st, 2023 before class

## Problem 1

A certain boost converter is implemented with a MOSFET and a p-n diode. The MOSFET can be modeled as ideal, but the diode exhibits a substantial reverse-recovery process, with reverse recovery time  $t_r$  and recovered charge  $Q_r$ . In addition, the inductor has winding resistance  $R_L$ .

- (a) Derive an equivalent circuit that models the dc components of the converter waveforms and that accounts for the loss elements described above.
- (b) Solve your model to find an expression for the output voltage.
- (c) Plot the output voltage vs. duty cycle over the range  $0 \le D < 1$ , for the following values:  $R_L = 0.4\Omega$ ,  $f_s = 200 \text{kHz}$ ,  $Qr = 8\mu\text{C}$ ,  $t_r = 100 \text{ns}$ ,  $R = 60\Omega$ ,  $V_g = 24 \text{V}$ .

## Problem 2

An unregulated dc input voltage  $V_g$  varies over the range  $40\mathrm{V} \leqslant Vg \leqslant 80\mathrm{V}$ . A buck converter reduces this voltage to 28V; a feedback loop varies the duty cycle as necessary such that the converter output voltage is always equal to 28V. The load power varies over the range  $10\mathrm{W} \leqslant P_{load} \leqslant 1000\mathrm{W}$ . The element values are:

$$L=18\mu \mathrm{H} \quad C=470\mu \mathrm{F} \quad f_s=50 \mathrm{kHz}$$

Loss may be ignored.

- (a) Over what range of  $V_g$  and load current does the converter operate in CCM?
- (b) Determine the maximum and minimum values of the steady-state transistor duty cycle.

## Problem 3

DCM conversion ratio analysis of the SEPIC converter of Fig. 1.

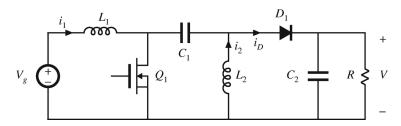



Figure 1: SEPIC converter.

(a) Suppose that the converter operates at the boundary between CCM and DCM, with the following element and parameter values:

$$D = 0.225$$
  $f_s = 100 \mathrm{kHz}$   
 $V_g = 120 \mathrm{V}$   $R = 10 \Omega$   
 $L_1 = 50 \mu \mathrm{H}$   $L_2 = 75 \mu \mathrm{H}$   
 $C_1 = 47 \mu \mathrm{F}$   $C_2 = 200 \mu \mathrm{F}$ 

Sketch the diode current waveform  $i_D(t)$ , and the inductor current waveforms  $i_1(t)$  and  $i_2(t)$ . Label the magnitudes of the ripples and dc components of these waveforms.

- (b) Suppose next that the converter operates in the discontinuous conduction mode, with a different choice of parameter and element values. Derive an analytical expression for the dc conversion ratio M(D, K).
- (c) Sketch the diode current waveform  $i_D(t)$ , and the inductor current waveforms  $i_1(t)$  and  $i_2(t)$ , for operation in the discontinuous conduction mode.

## Problem 4

Analysis of the DCM flyback converter. The flyback converter of Fig. 2 operates in the discontinuous conduction mode.

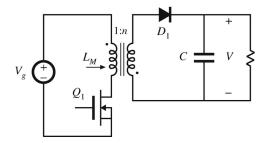



Figure 2: Flyback converter.

- (a) Model the flyback transformer as a magnetizing inductance in parallel with an ideal transformer, and sketch the converter circuits during the three subintervals.
- (b) Derive the conditions for operation in discontinuous conduction mode.
- (c) Solve the converter: derive expressions for the steady-state output voltage V and subinterval 2 (diode conduction interval) duty cycle  $D_2$ .

## Problem 5

Optimal reset of the forward converter transformer. As illustrated in Fig. 3, it is possible to reset the transformer of the forward converter using a voltage source other than the dc input  $V_g$ ; several such schemes appear in the literature. By optimally choosing the value of the reset voltage  $V_r$ , the peak voltage stresses imposed on transistor  $Q_1$  and diode  $D_2$  can be reduced. The maximum duty cycle can also be increased, leading to a lower transformer turns ratio and lower transistor current. The resulting improvement in converter cost and efficiency can be significant when the dc input voltage varies over a wide range.

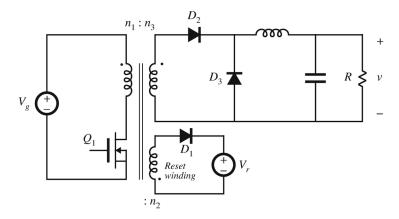



Figure 3: Forward converter with auxiliary reset winding.

- (a) As a function of  $V_g$ , the transistor duty cycle D, and the transformer turns ratios, what is the minimum value of  $V_r$  that causes the transformer magnetizing current to be reset to zero by the end of the switching period?
- (b) For your choice of  $V_r$  from part (a), what is the peak voltage imposed on transistor  $Q_1$ ?

This converter is to be used in a universal-input off-line application, with the following specifications. The input voltage  $V_g$  can vary between 127 and 380 V. The load voltage is regulated by variation of the duty cycle, and is equal to 20 V. The load power is 480 W.

- (c) Choose the turns ratio  $n_3/n_1$  such that the total active switch stress is minimized. For your choice of  $n_3/n_1$ , over what range will the duty cycle vary? What is the peak transistor current?
- (d) Compare your design of Part (c) with the conventional scheme in which  $n_1 = n_2$  and  $V_r = V_g$ . Compare the worst-case peak transistor voltage and peak transistor current.
- (e) Suggest a way to implement the voltage source  $V_r$ . Give a schematic of the power stage components of your implementation. Use a few sentences to describe the control circuit functions required by your implementation, if any.

## Transients and simulation

Shown in Fig. 4 is a diagram of a circuit used to generate a large pulsed magnetic field. The capacitor is pre-charged to a voltage Vx, which can be between 0 and 1500 V. At time t = 0, the switch S is closed to trigger the magnetic pulse. The value of R is  $100m\Omega$ , C is  $180\mu$ F, and L is  $13\mu$ H. The switch S and diode D are ideal.

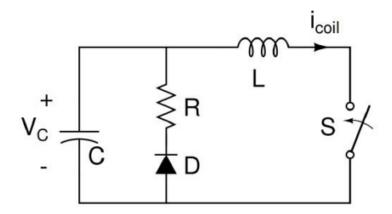



Figure 4: A circuit used to generate a large pulsed magnetic field.

#### Calculate the following:

- (a) The time response of the coil current  $(i_{coil})$  after the switch S is closed, as a function of the pre-charge voltage  $V_x$ .
- (b) The peak coil current for  $V_x = 1500$ V.
- (c) The time  $t_1$  at which diode D turns on.
- (d) The energy dissipated in the resistor R for  $V_x = 300$ V.
- (e) Simulate the circuit operation in Simulink. Plot the corresponding inductor current and capacitor voltages versus time. Attach a print-out of these two state variables to your problem set.
- (f) Increase the resistor R until you observe an underdamped response of the system. Turn in a plot of the inductor current and capacitor voltage.

In the Simulink simulation, use "Simscape-SimPowerSystem-Specialized Technology" library to build this circuit.