- Deadline: May 6 ${ }^{\text {th }}$ 8:00 a.m.
- Please submit your homework through Gradescope (Course Entry Code: 3PV4VP)
- Handwriting is not suggested, and a poor format will lose at most 10% of your final score.
- Giving your solution in English, solution in Chinese is not allowed.
- Plagiarism is not allowed. Those plagiarized solutions will get 0 point.
- Total: 200 points

1. DCM isolated SEPIC converter. (80 points)

Fig. 1 Isolated SEPIC converter.
a) Derive the expression for the conditions under which the converter operates in the DCM (for idi). You may assume $\mathrm{L}_{1}, \mathrm{C}_{1}$ and C_{2} are sufficiently large. Express the result in the form $\mathrm{K}<\mathrm{K}_{\text {crit }}(\mathrm{D})$ and derive the expression for K and $\mathrm{K}_{\text {crit }}(\mathrm{D})$. (30 points)
b) Derive the conversion ratio $\mathrm{M}(\mathrm{D}, \mathrm{K})$ of the converter. (10 points)
c) Under DCM mode, sketch the voltage and current waveforms of inductor L_{1} and L_{2}, derive the expressions of their ripple magnitudes and dc components. (20 points)
d) Based on the current ripples, derive the voltage ripple for C_{1}. (20 points)
2. All three legs of the magnetic device illustrated in Fig. 2 are of uniform cross-sectional area Ac. Legs 1 and 2 each have magnetic path length $3 l$, while leg 3 has magnetic path length l. Both windings have n turns. The core has permeability $\mu \gg \mu 0$. (50 points)

Fig. 2. Magnetic device.
a) Sketch a magnetic equivalent circuit, and give analytical expressions for all element values. A voltage source is connected to winding 1 , such that $v_{l}(t)$ is a square wave of peak value $V_{\max }$ and period T_{s}. Winding 2 is open-circuited. (30 points)
b) Sketch $v_{2}(t)$ and label its peak value. (20 points)
3. Rotation of switching cells. A network containing switches and reactive elements has terminals a, b, and c, as illustrated in Fig.3(a). You are given that the relationship between the terminal voltages is $V_{b c} / V_{a c}=$ $\boldsymbol{\mu}(D)$. (70 points)
(a)

(c)

Fig. 3. Rotation of three-terminal switching cells.
(a) Derive expressions for the source-to-Ioad conversion ratio $\mathrm{M}(\mathrm{D})=\mathrm{V} / \mathrm{Vg}$, in terms of $\boldsymbol{\mu}(\mathrm{D})$, for the following three connection schemes: (30 points)
(i) $\mathrm{a}-\mathrm{A} \mathrm{b}-\mathrm{B} \mathrm{c}-\mathrm{C}$
(ii) $\mathrm{a}-\mathrm{B} \mathrm{b}-\mathrm{Cc}-\mathrm{A}$
(iii) $\mathrm{a}-\mathrm{C} \mathrm{b}-\mathrm{A} \mathrm{c-B}$
(b) Consider the three-terminal network of Fig. 3 (b). Determine $\boldsymbol{\mu}(D)$ for this network. Plug your answer into your results from part (a), to verify that the buck, boost, and buck-boost converters are generated. (20 points)
(c) Consider the three-terminal network of Fig. 3 (c). Determine $\boldsymbol{\mu}(D)$ for this network. Plug your answer into your results from part (a). What converters are generated? (20 points)

