Homework \#3 (2024 Spring, EE 171)

- Deadline: June $10^{\text {th }}$ 8:00 a.m.
- Please submit your homework through Gradescope (Course Entry Code: 3PV4VP)
- Handwriting is not suggested, and a poor format will lose at most 10% of your final score.
- Giving your solution in English, solution in Chinese is not allowed.
- Plagiarism is not allowed. Those plagiarized solutions will get 0 point.
\checkmark Total: 180 points

Q1. Passive rectifier circuit. In the passive rectifier circuit of Fig. 1, L is very large, such that the inductor current $i(t)$ is essentially dc. All components are ideal. (80 points)

Fig. 1 Passive rectifier circuit
(a) Determine the power factor, measured at surfaces $S 1$ and $S 2$. (20 points)
(b) Replace D_{1} and D_{3} with thyristor Q_{1} and Q_{3}, the thyristor delay angle is α. Analyze the operation mode. Sketch the waveforms $v_{R}(t)$ and $i_{g}(t)$; Label the conduction intervals of each thyristor and diode. (40 points)
(c) Derive an expression for the output voltage V, as a function of the rms line-line voltage and the delay angle. Derive an expression for the power factor. (20 points)

Q2. The voltage v across a load and the current i into the positive-polarity terminal are as follows (where ω_{1} and ω_{3} are not equal):

$$
\begin{array}{cc}
v(t)=V_{d}+\sqrt{2} V_{1} \cos \left(\omega_{1} t\right)+\sqrt{2} V_{1} \sin \left(\omega_{1} t\right)+\sqrt{2} V_{3} \cos \left(\omega_{3} t\right) & \mathbf{V} \\
i(t)=I_{d}+\sqrt{2} I_{1} \cos \left(\omega_{1} t\right)+\sqrt{2} I_{3} \cos \left(\omega_{3} t-\phi_{3}\right) & \mathbf{A}
\end{array}
$$

Calculate the following:
(a) The average power P supplied to the load. ($\mathbf{1 0}$ points)
(b) The rms value of $v(\mathrm{t})$ and $i(\mathrm{t})$. (20 points)
(c) The power factor at which the load is operating. ($\mathbf{1 0}$ points)

Q3. In the circuit Fig. 2, $v_{s 1}$ and $v_{s 2}$ have an rms value of 120 V at 60 Hz , and the two are 180° out of phase. Assume $L_{s}=5 \mathrm{mH}$ and $I_{d}=10 \mathrm{~A}$ is a dc current. For the following two values of the delay angle α, (i) 45° and (ii) 135°.
(a) Obtain $v_{s 1}, i_{s 1}$ and v_{d} waveforms. (30 points)
(b) Calculate the average value V_{d} and the commutation interval u (30 points)

Fig. 2

