Homework #3 (2024 Spring, EE 171)

- Deadline: June 10^{th} 8:00 a.m.
- Please submit your homework through Gradescope (Course Entry Code: 3PV4VP)
- ◆ Handwriting is not suggested, and a poor format will lose at most 10% of your final score.
- Giving your solution in English, solution in Chinese is not allowed.
- Plagiarism is not allowed. Those plagiarized solutions will get 0 point.
- ◆ Total: 180 points

Q1. Passive rectifier circuit. In the passive rectifier circuit of Fig. 1, L is very large, such that the inductor current i(t) is essentially dc. All components are ideal. (80 points)

Fig. 1 Passive rectifier circuit

- (a) Determine the power factor, measured at surfaces *S* 1 and *S* 2. (20 points)
- (b) Replace D_1 and D_3 with thyristor Q_1 and Q_3 , the thyristor delay angle is α . Analyze the operation mode. Sketch the waveforms $v_R(t)$ and $i_g(t)$; Label the conduction intervals of each thyristor and diode. (40 points)
- (c) Derive an expression for the output voltage *V*, as a function of the rms line-line voltage and the delay angle. Derive an expression for the power factor. (20 points)

Q2. The voltage *v* across a load and the current *i* into the positive-polarity terminal are as follows (where ω_1 and ω_3 are not equal):

$$v(t) = V_{d} + \sqrt{2}V_{1}\cos(\omega_{1}t) + \sqrt{2}V_{1}\sin(\omega_{1}t) + \sqrt{2}V_{3}\cos(\omega_{3}t) \quad \mathbf{V}$$

$$i(t) = I_{d} + \sqrt{2}I_{1}\cos(\omega_{1}t) + \sqrt{2}I_{3}\cos(\omega_{3}t - \phi_{3}) \qquad \mathbf{A}$$

Calculate the following:

- (a) The average power P supplied to the load. (10 points)
- (b) The rms value of v(t) and i(t). (20 points)
- (c) The power factor at which the load is operating. (10 points)

Q3. In the circuit Fig. 2, v_{s1} and v_{s2} have an rms value of 120V at 60Hz, and the two are 180° out of phase. Assume L_s =5mH and I_d =10A is a dc current. For the following two values of the delay angle α , (i) 45° and (ii) 135°.

(a) Obtain v_{s1} , i_{s1} and v_d waveforms. (30 points)

(b) Calculate the average value V_d and the commutation interval u (30 points)

Fig. 2