

# EE115A Analog Circuits

## Homework 2

Due date: **10/14/2025**

**Note:**

- Please provide enough calculation process to get full marks.
- Please submit your homework to Gradescope (code **J62G3D**) in PDF version.
- It's highly recommended to write every exercise on a single sheet of page.
- Late submissions will have points deducted according to the penalty policy.
- Please use English only to complete the assignment, solutions in Chinese are not allowed.
- Plagiarizer will get zero points.
- The full score of this assignment is 100 points.

### Exercise 1. (15pt)

An op amp wired in the inverting configuration with the input grounded, having  $R_2 = 20k\Omega$  and  $R_1 = 2k\Omega$ , has an output dc voltage of  $-40\text{ mV}$ . If the input bias current is known to be very small, find the input offset voltage.

## Exercise 2. (15pt)

Measurements of the open-loop gain of a compensated op amp intended for high-frequency operation indicate that the gain is  $4 \times 10^3$  at  $100 \text{ kHz}$  and  $8 \times 10^2$  at  $1 \text{ MHz}$ . Estimate its 3-dB frequency, its unity-gain frequency, and its dc gain.

### Exercise 3. (25pt)

**Note:** This question requires simulation. Please note that you need to use **Multisim** for simulation and provide the simulation circuit and simulation results in your answer.

Consider an op amp connected in the inverting configuration to realize a closed-loop gain of  $-100 \text{ V/V}$  utilizing resistors of  $1 \text{ k}\Omega$  and  $100 \text{ k}\Omega$ . A load resistance  $R_L$  is connected from the output to ground, and a low-frequency sine-wave signal of peak amplitude  $V_p$  is applied to the input. Let the op amp be ideal except that its output voltage saturates at  $\pm 10 \text{ V}$  and its output current is limited to the range  $\pm 10 \text{ mA}$ . This is the case for an ADA4077 op amp operating from  $\pm 11 - V$  supplies.

- (a) For  $R_L = 2 \text{ k}\Omega$ , what is the maximum possible value of  $V_p$  while an undistorted output sinusoid is obtained?
- (b) Repeat (a) for  $R_L = 200 \Omega$ .
- (c) If it is desired to obtain an output sinusoid of  $10\text{-V}$  peak amplitude, what minimum value of  $R_L$  is allowed?

### Exercise 4. (15pt)

For a silicon crystal doped with phosphorus, what must  $N_D$  be if at  $T = 300 K$  the hole concentration drops below the intrinsic level by a factor of  $10^8$  ?

### Exercise 5. (15pt)

Find the length of a silicon bar having a  $5\text{-}\mu\text{m} \times 4\text{-}\mu\text{m}$  cross section and having free-electron and hole densities of  $10^4/\text{cm}^3$  and  $10^{16}/\text{cm}^3$ , respectively, so that  $0.2\text{ mA}$  current flows when  $1\text{ V}$  is applied end-to-end. Use  $\mu_n = 1200\text{cm}^2/\text{V}\cdot\text{s}$  and  $\mu_p = 500\text{cm}^2/\text{V}\cdot\text{s}$ .

### Exercise 6. (15pt)

Holes are being steadily injected into a region of n-type silicon (connected to other devices, the details of which are not important for this question). In the steady state, the excess-hole concentration profile shown in Fig.P1 is established in the n-type silicon region at room temperature. Here “excess” means over and above the thermal-equilibrium concentration (in the absence of hole injection), denoted  $p_{n0}$ . If  $N_D = 10^{16}/cm^3$ ,  $n_i = 1.5 \times 10^{10}/cm^3$ ,  $D_p = 12cm^2/s$ , and  $W = 50 nm$ , find the density of the current that will flow in the x direction.



Fig.P1