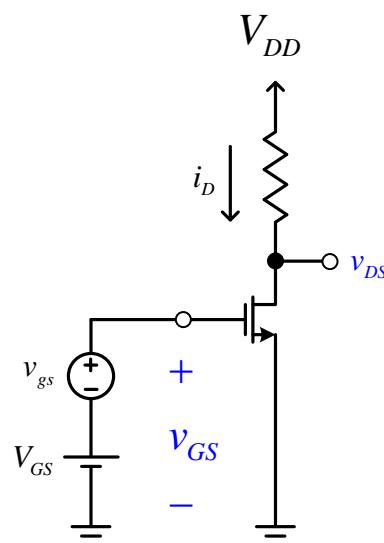


EE115A Analog Circuits

Homework 4

Due date: **11/4/2025**


Note:

- Please provide enough calculation process to get full marks.
- Please submit your homework to Gradescope (code **J62G3D**) in PDF version.
- It's highly recommended to write every exercise on a single sheet of page.
- Late submissions will have points deducted according to the penalty policy.
- Please use English only to complete the assignment, solutions in Chinese are not allowed.
- Plagiarizer will get zero points.
- The full score of this assignment is 100 points.

Exercise 1. (20pt)

Consider the MOSFET amplifier of **Fig.P1** for the case $V_t = 0.4$ V, $k_n = 10$ mA/V², $V_{GS} = 0.6$ V, $V_{DD} = 1.8$ V, and $R_D = 6.8$ k Ω .

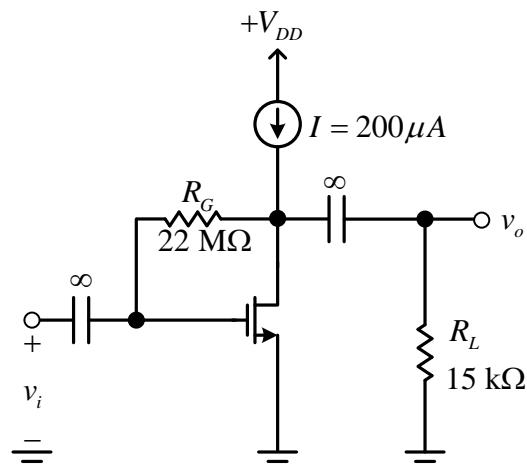
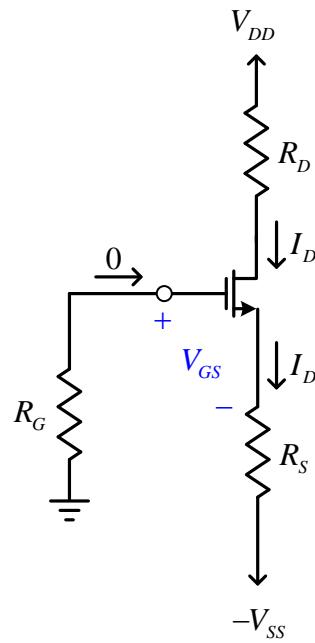

- (a) Find the dc quantities I_D and V_{DS}
- (b) Calculate the value of g_m at the bias point.
- (c) Calculate the value of the voltage gain.
- (d) If the MOSFET has $\lambda = 0.2$ V⁻¹, find r_o , at the bias point and calculate the voltage gain.

Fig.P1

Exercise 2. (20pt)

In the circuit of **Fig.P2**, the NMOS transistor has $|V_t| = 0.8$ V and $V_A = 20$ V and operates with $V_D = 1$ V. What is the voltage gain v_o/v_i ? What do V_D and the gain become for I increased to 1 mA?


Fig.P2

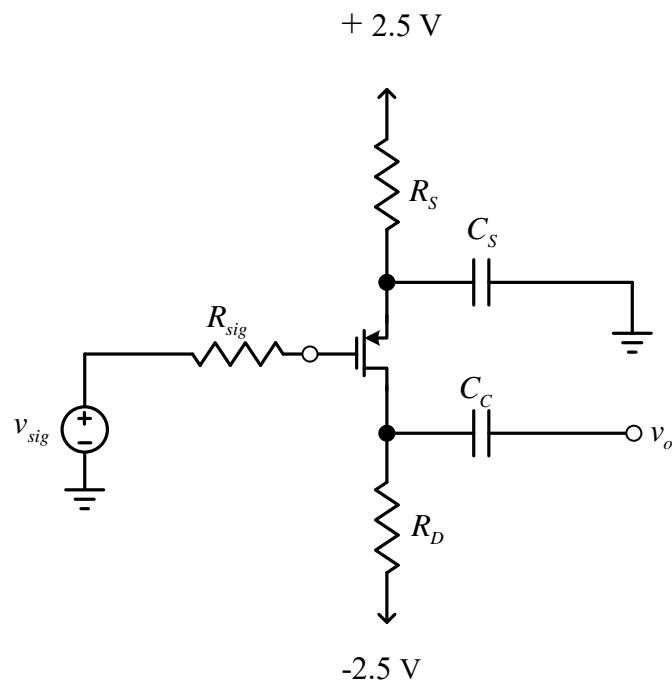
Exercise 3. (20pt)

A CS amplifier utilizes a MOSFET with $\mu nC_{ox} = 400 \mu A/V^2$ and $WL = 10$. It is biased at $I_D = 0.5$ mA and uses $R_D = 10k\Omega$. Find R_{in} , A_{vo} , and R_o . Also, if a load resistance of $10 k\Omega$ is connected to the output, what overall voltage gain G_V is realized? Now, if a 0.5-V peak sine-wave signal is required at the output, what must the peak amplitude of v_{sig} be?

Exercise 4. (20pt)

Design the circuit of **Fig.P4** for a MOSFET having $V_t = 0.6$ V and $k_n = 5$ mA/V². Let $V_{DD} = V_{SS} = 3$ V. Design for a dc bias current of 0.4 mA and for the largest possible voltage gain (and thus the largest possible R_D) consistent with allowing a 1.2-V peak-to-peak voltage swing at the drain. Assume that the signal voltage on the source terminal of the FET is zero.

Fig.P4


Exercise 5. (20pt)

Note: This question requires simulation. Please note that you need to use [Multisim](#) for simulation and provide the simulation circuit and simulation results in your answer.

Ensure that you provide both [theoretical calculation](#) results and [simulation](#) results.

The PMOS transistor in the CS amplifier of [Fig.P6](#) has $V_{tp} = -0.75$ V and a very large $|VA|$.

- (a) Select a value for R_s to bias the transistor at $I_D = 0.5$ mA and $|V_{ov}| = 0.25$ V. Assume v_{sig} to have a zero dc component.
- (b) Select a value for R_D that results in $G_v = -12$ V/V.

Fig.P5