

EE115A Analog Circuits

Homework 5

Due date: **25/11/2025**

Note:

- Please provide enough calculation process to get full marks.
- Please submit your homework to Gradescope (code **J62G3D**) in PDF version.
- It's highly recommended to write every exercise on a single sheet of page.
- Late submissions will have points deducted according to the penalty policy.
- Please use English only to complete the assignment, solutions in Chinese are not allowed.
- Plagiarizer will get zero points.
- The full score of this assignment is 100 points.

Exercise 1. (15pt)

The current-steering circuit of Fig. P1 is fabricated in a CMOS technology for which $\mu_n C_{ox} = 400 \mu\text{A}/\text{V}^2$, $\mu_p C_{ox} = 100 \mu\text{A}/\text{V}^2$, $V_{tn} = 0.5 \text{ V}$, $V_{tp} = -0.5 \text{ V}$, $V'_{A_n} = 6 \text{ V}/\mu\text{m}$, and $|V'_{A_p}| = 6 \text{ V}/\mu\text{m}$. If all devices have $L = 0.5 \mu\text{m}$, design the circuit so that $I_{REF} = 20 \mu\text{A}$, $I_2 = 80 \mu\text{A}$, $I_3 = I_4 = 50 \mu\text{A}$, and $I_5 = 100 \mu\text{A}$. Use the minimum possible device widths needed to operate the current source Q_2 with voltages at its drain as high as $+0.8 \text{ V}$ and to operate the current sink Q_5 with voltages at its drain as low as -0.8 V . Specify the widths of all devices and the value of R . Find the output resistance of the current source Q_2 and the output resistance of the current sink Q_5 .

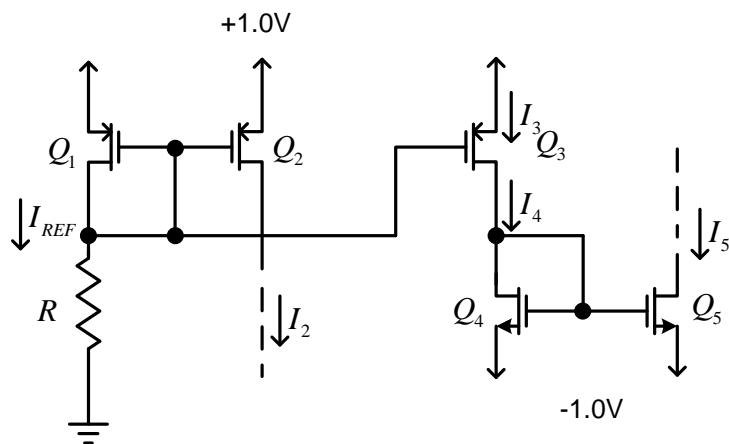


Fig. P1

Exercise 2. (15pt)

Consider an NMOS transistor fabricated in a $0.18\text{-}\mu\text{m}$ technology for which $k_n' = 400 \mu\text{A/V}^2$ and $V_A' = 5 \text{ V}/\mu\text{m}$. It is required to obtain an intrinsic gain of 25 V/V and a g_m of 1 mA/V . Using $V_{ov} = 0.2 \text{ V}$, find the required values of L , W/L , and the bias current I .

Exercise 3. (20pt)

The purpose of this problem is to investigate the signal currents and voltages at various points throughout a cascode amplifier circuit. Knowledge of this signal distribution is very useful in designing the circuit so as to allow for the required signal swings. Figure P3 shows a CMOS cascode amplifier with all dc voltages replaced with signal grounds. As well, we have explicitly shown the resistance r_o of each of the four transistors. For simplicity, we are assuming that the four transistors have the same g_m and r_o . The amplifier is fed with a signal v_i .

- Determine R_1 , R_2 , and R_3 . Assume $g_m r_o \gg 1$.
- Determine i_1 , i_2 , i_3 , i_4 , i_5 , i_6 , and i_7 , all in terms of v_i . (Hint: Use the current-divider rule at the drain of Q_1 .)
- Determine v_1 , v_2 , and v_3 , all in terms of v_i .
- If v_i is a 5-mV peak sine wave and $g_m r_o = 20$, sketch and clearly label the waveforms of v_1 , v_2 , and v_3 .

Figure P3

Exercise 4. (15pt)

A source follower for which $k_n' = 400 \mu\text{A}/\text{V}^2$, $V_A' = 9 \text{ V}/\mu\text{m}$, $\chi = 0.2$, $L = 0.6 \mu\text{m}$, $W = 12 \mu\text{m}$, and $V_t = 0.5 \text{ V}$ is required to provide a dc level shift (between input and output) of 0.8 V.

(a) What must the bias current be?

(b) Find g_m , g_{mb} , r_o , A_{vo} , and R_o . Assume that the bias current source has an output resistance equal to r_o . Also find the voltage gain when a load resistance of $3 \text{ k}\Omega$ is connected to the output.

Exercise 5. (35pt)

Note: This question requires simulation. Please note that you need to use [Multisim](#) for simulation and provide the simulation circuit and simulation results in your answer.

Ensure that you provide both [theoretical calculation](#) results and [simulation](#) results.

A particular cascoded NMOS current mirror, such as that shown in Fig. P5, is fabricated in the $0.18\text{-}\mu\text{m}$ CMOS process specified in Table 1. All transistors have equal channel lengths $L = 0.54\text{ }\mu\text{m}$. Width $W_1 = W_4 = 2.7\text{ }\mu\text{m}$, and $W_2 = W_3 = 27\text{ }\mu\text{m}$. The reference current I_{REF} is $20\text{ }\mu\text{A}$.

- (a) What output current results?
- (b) What are the voltages at the gates of Q_2 and Q_3 ?
- (c) What is the lowest voltage at the output for which proper current-source operation is possible?
- (d) What are the values of g_m and r_o of Q_2 and Q_3 ?
- (e) What is the output resistance of the mirror?

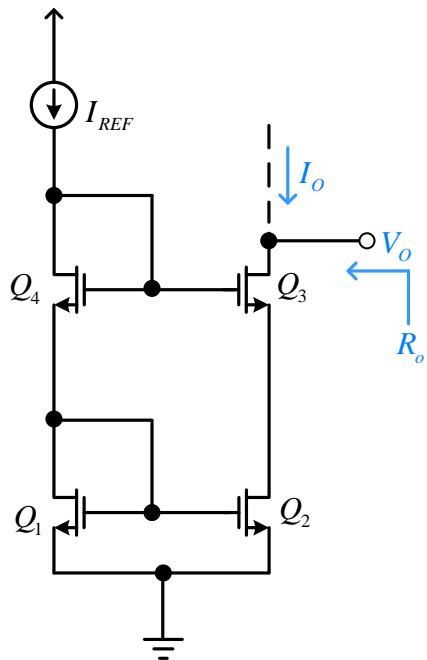


Fig. P5

Table 1:

Parameter (0.18 μ m)	NMOS	PMOS
t_{ox} (nm)	4	4
c_{ox} (fF/ μ m 2)	8.6	8.6
μ (cm 2 /V \cdot s)	450	100
μc_{ox} (μ A/V 2)	387	86
V_{t0} (V)	0.5	-0.5
V_{DD} (V)	1.8	1.8
$ V_{A'} $ (V/ μ m)	5	6
C_{ov} (fF/ μ m)	0.37	0.33