

EE115A Analog Circuits

Homework 6

Due date: **12/4/2025**

Note:

- Please provide enough calculation process to get full marks.
- Please submit your homework to Gradescope (code **J62G3D**) in PDF version.
- It's highly recommended to write every exercise on a single sheet of page.
- Late submissions will have points deducted according to the penalty policy.
- Please use English only to complete the assignment, solutions in Chinese are not allowed.
- Plagiarizer will get zero points.
- The full score of this assignment is 100 points.

Exercise 1. (25pt)

For the PMOS differential amplifier shown in Fig. P1, let $V_{tp} = -0.4$ V and

$k'pW/L = 5 \text{ mA/V}^2$. Neglect channel-length modulation.

(a) For $V_{G1} = V_{G2} = 0$ V, find $|V_{ov}|$ and V_{SG} for each of Q1 and Q2. Also find V_s , V_{D1} ,

V_{D2} , and V_o .

(b) If the current source requires a minimum voltage of 0.2 V, find the input common-mode range.

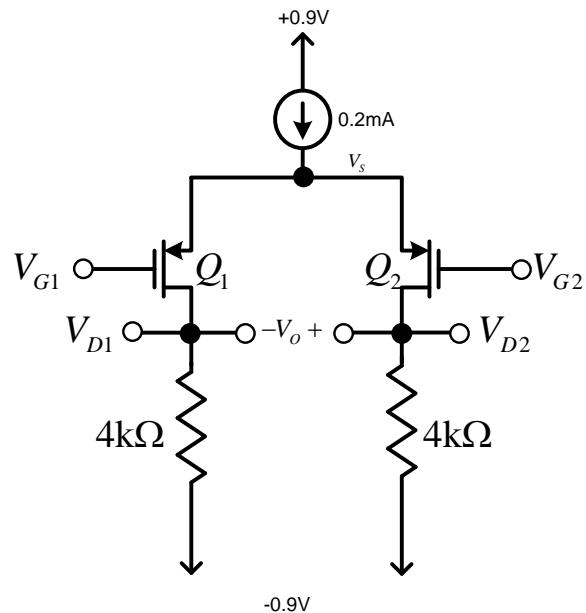


Fig. P1

Exercise 2. (25pt)

Consider the differential amplifier specified in Problem &2 with G_2 grounded

and $V_{G1} = V_{id}$. Let V_{id} be adjusted to the value that causes $i_{D1} = 0.09\text{mA}$ and

$i_{D2} = 0.07\text{ mA}$. Find the corresponding values of V_{GS2} , V_s , V_{GS1} and hence V_{id} .

What is the difference output voltage V_o ? What is the voltage gain

V_o / V_{id} ? What value of V_{id} results in $i_{D1} = 0.07\text{ mA}$ and $i_{D2} = 0.09\text{ mA}$?

Problem &2: (This question does not require an answer)

For an NMOS differential pair with a common-mode voltage V_{CM} applied, as

shown in Fig.P2, let $V_{DD} = V_{SS} = 1.0\text{ V}$, $k'n = 0.4\text{ mA/V}^2$, $(W/L)_{12} = 10$, $V_{tn} = 0.4\text{ V}$, $I = 0.16\text{ mA}$, $R_D = 5\text{ k}\Omega$, and neglect channel-length modulation.

- (a) Find V_{ov} and V_{GS} for each transistor.
- (b) For $V_{CM} = 0$, find V_s , i_{D1} , i_{D2} , V_{D1} , V_{D2} , and V_o .
- (c) Repeat (b) for $V_{CM} = +0.4\text{ V}$.
- (d) Repeat (b) for $V_{CM} = -0.1\text{ V}$.
- (e) What is the highest value of V_{CM} for which Q_1 and Q_2 remain in saturation?
- (f) If current source I requires a minimum voltage of 0.2 V to operate properly, what is the lowest value allowed for V_s and hence for V_{CM} ?
- (g) What is the input common-mode range

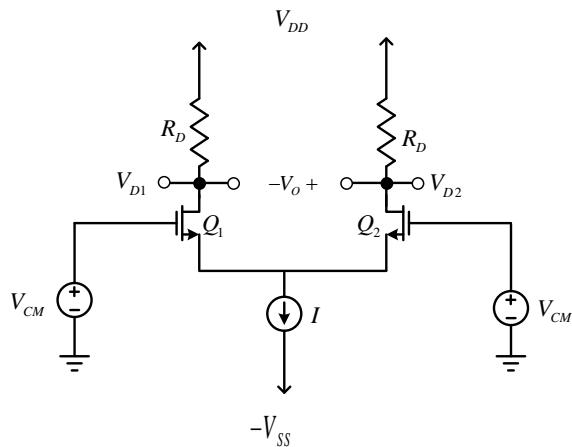


Fig. P2

Exercise 3. (25pt)

Note: This question requires simulation. Please note that you need to use **Multisim** for simulation and provide the simulation circuit and simulation results in your answer.

The differential amplifier in Fig. P3 utilizes a resistor R_{SS} to establish a 0.02-mA dc bias current.

Note that this amplifier uses a single 2-V supply and thus the dc common-mode voltage cannot be zero. Transistors Q1 and Q2 have $k_n W/L = 1 \text{ mA/V}^2$, $V_t = 0.4 \text{ V}$, and $\lambda = 0$.

- (a) Find the required value of V_{CM} .
- (b) Find the value of R_D that results in a differential gain A_d of 15 V/V.
- (c) Determine the dc voltage at the drains.
- (d) Determine the single-ended-output common-mode gain $\Delta V_{DI}/\Delta V_{CM}$. (Hint: You need to take $1/g_m$ into account.)
- (e) Use the common-mode gain found in (d) to find the change in V_{CM} that results in Q1 and Q2 entering the triode region.

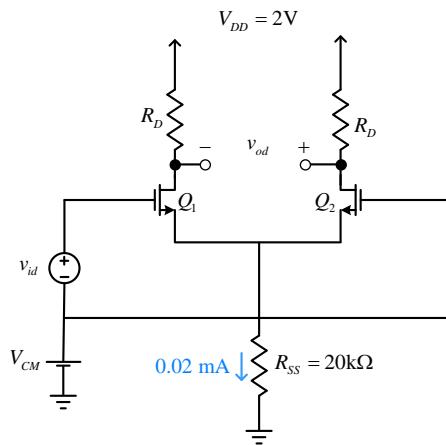


Fig. P3

Exercise 4. (25pt)

A current-mirror-loaded NMOS differential amplifier is fabricated in a technology for which $|V_A| = 6V/\mu m$. All the transistors have $L = 0.5 \mu m$. If the differential-pair transistors are operated at $V_{ov} = 0.2 V$, what open-circuit differential gain is realized?