

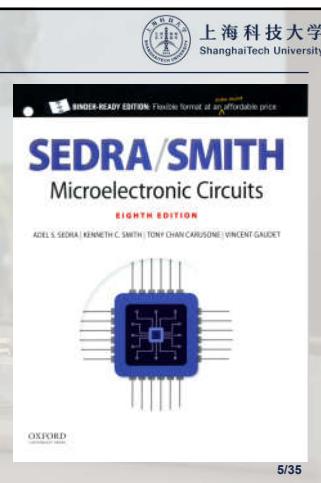
EE115 Analog Circuits Introduction

Prof. Haoyu Wang
Office: SIST Bldg. 3-530
wanghy@shanghaitech.edu.cn

Course Information

- Lecture
 - Tuesday 8:15-9:55, Thursday (Even week) 8:15-9:55
 - Rm 1D-106 SIST Bldg.
- Instructor
 - Prof. Haoyu Wang
 - Rm 3-530 SIST Bldg., wanghy@shanghaitech.edu.cn
 - Office hours: Friday 3:00pm-5:00pm; other times by appointment
- Recitation:
 - Once every 2 lectures
 - Will be announced by TA in advance

Outline


- Course logistics
- History of electronics and microelectronics
- Need of analog electronics
- Why is it more challenging to design analog than digital circuitry?
- Why integrated and why CMOS?

Teaching Assistants

	TA	TA
Recitation & Grader	 Zeyu Wu wuzy12023@shanghaitech	 Taojie Chen chenjt2023@shanghaitech
Lab & Project	 Jiashen Yu yujs2022@shanghaitech	 Guanhua Liu liugh2025@shanghaitech

Textbook

- Sedra/Smith, Microelectronic Circuits, 8th edition
 - Oxford University Press
- Minimum reading
 - Assigned sections in the website
- Best to read the relevant sections before lecture
 - Enables meaningful in class discussions

 PEARL
电力电子与再生能源实验室

Homework

- Posted in course website & gradescope
- Due one week after it is posted
 - Will be collected in gradescope
 - <https://www.gradescope.com/courses/1060659>
 - Late homework will be discounted by 20% per day
 - Solution will be discussed in the recitation session
- Be prepared to spend **6-10 hours** to complete
 - Reading, problem solving
- You may discuss homework problems with other students in the class, the TAs, or the instructor.
- **The work you submit for grading must be your own**

 gradescope

 PEARL
电力电子与再生能源实验室

7/35

Course Website

- Open website
 - General course info, lecture notes, hw problems
 - <https://pearl.shanghaitech.edu.cn/teaching/2025Fall/EE115/>
- Discussions
 - QQ group: 797162060

 PEARL
电力电子与再生能源实验室

6/35

Grades

- Homework: 15%
 - Lowest score will be dropped from grade calculation
- Lab 20%
 - Led by Teacher LIU Chuang
- Midterm: 20%
- Project 15%
- Final exam: 20%
- Attendance: 5%
- Quiz: 5%
- **Cheating will result in automatic Fail!**

LIU Chuang
SIST 1B-206
liuchuang1@shanghaitech

 PEARL
电力电子与再生能源实验室

8/35

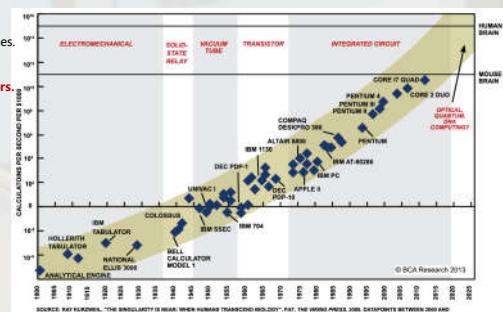
Midterm & Final Exams

- Midterm:
 - 11/6/2025 (Thur.) in class
- Final Exam:
 - 12/23/2025 (Tue.)

上海科技大学
ShanghaiTech University

Week	Date	Lectures	Reading Seda/Smith	HW & Project
1	9/16	Syllabus [PDF] Lecture 1 Introduction [PDF]	Chapter 1, pp. 1-15	
	9/23	Lecture 2 Op-Amp basics [PDF]	Chapter 1, pp. 16-45	
2	9/25	Lecture 3 Ideal Op-Amp [PDF]	Chapter 2, pp. 59-82	HW1 [PDF] Due date: 10/7/2025
3	9/30	Lecture 4 Non-ideal Op-Amp [PDF]	Chapter 2, pp. 97-116	
4	10/7	Lecture 5 Semiconductors [PDF]	Chapter 3, pp. 136-149	HW2 [PDF] Due date: 10/14/2025
	10/9	Lecture 6 PN Junction [PDF]	Chapter 3, pp. 150-169	
5	10/14	Lecture 7 MOSFET [PDF]	Chapter 5, pp. 244-284	HW3 [PDF] Due date: 10/21/2025

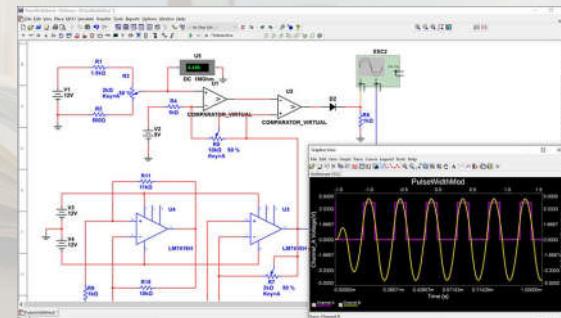
9/35


电力电子与再生能源实验室

Electronics Milestones

上海科技大学
ShanghaiTech University

- 1874 Braun invents the **solid-state rectifier**.
- 1906 DeForest invents triode **vacuum tube**.
- 1907-27 First radio circuits developed from diodes and triodes.
- 1925 Lilienfeld field-effect device patent filed.
- 1947 Bardeen & Brattain at Bell Lab invent **bipolar transistors**.
- 1952 Commercial bipolar transistor production at TI.
- 1956 Bardeen, Brattain, and Shockley receive Nobel prize.
- 1958 **Integrated circuit** developed by Kilby and Noyce
- 1961 First commercial **IC** from Fairchild Semiconductor
- 1963 IEEE formed from merger of IRE and AIEE
- 1968 First commercial **IC op-amp**
- 1970 One transistor DRAM cell invented by Dennard at IBM.
- 1971 4004 Intel **microprocessor** introduced.
- 1974 8080 microprocessor introduced.
- 1978 First commercial 1-kilobit memory.
- 1984 Megabit memory chip introduced.
- 2000 Alferov, Kilby, and Kromer share Nobel prize

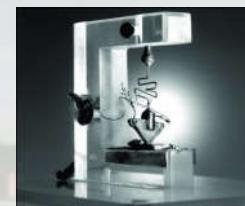

11/35

Simulation Software

上海科技大学
ShanghaiTech University

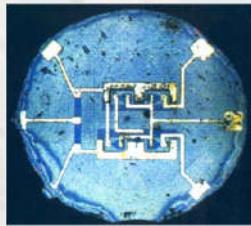
- SPICE (Simulation Program with Integrated Circuit Emphasis)
 - **Multisim** from National Instruments

3/35

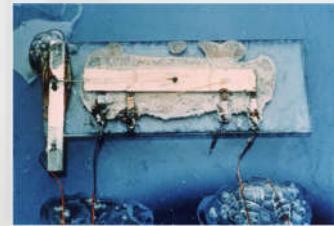

Invention of Transistors - 1947

上海科技大学
ShanghaiTech University

Bardeen, Shockley, and Brattain at Bell Labs - Brattain and Bardeen invented the **bipolar transistor** in 1947.



The first germanium bipolar transistor. Roughly 50 years later, electronics account for **10% of the world GDP**.



12/35

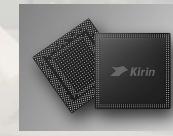
The First Integrated Circuits - 1958

R. N. Noyce
Fairchild Semiconductor
Co-Founder of both Fairchild and Intel (deceased 1990)
Unitary Circuit made of Si

Jack Kilby
Texas Instruments
Invented IC during his first year at TI
(Nobel Prize 2000)
Solid Circuit made of Ge

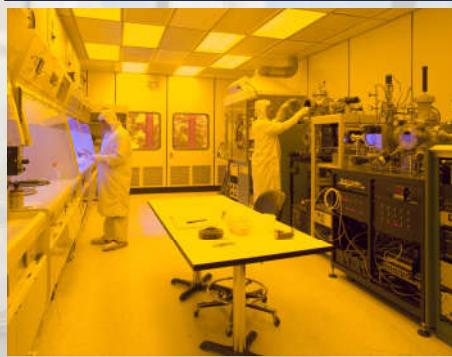
13/35

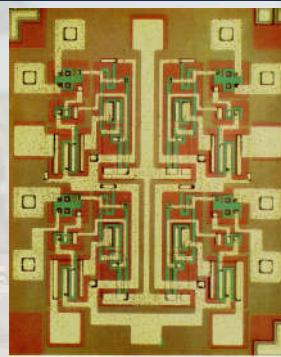
Evolution of Electronic Devices


Vacuum
Tubes

Discrete
Transistors

SSI and MSI
Integrated
Circuits

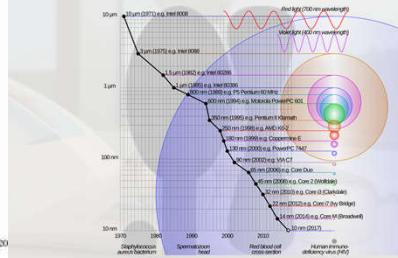
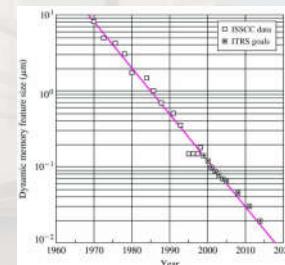

VLSI
Surface-Mount
Circuits


PEARL
电力电子与再生能源实验室

14/35

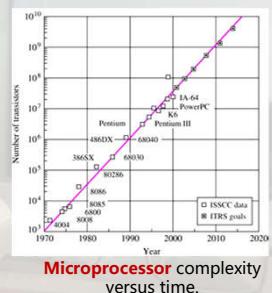
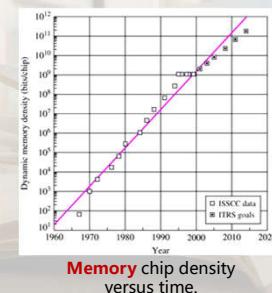
Semiconductor Device Fabrication

Clean Room

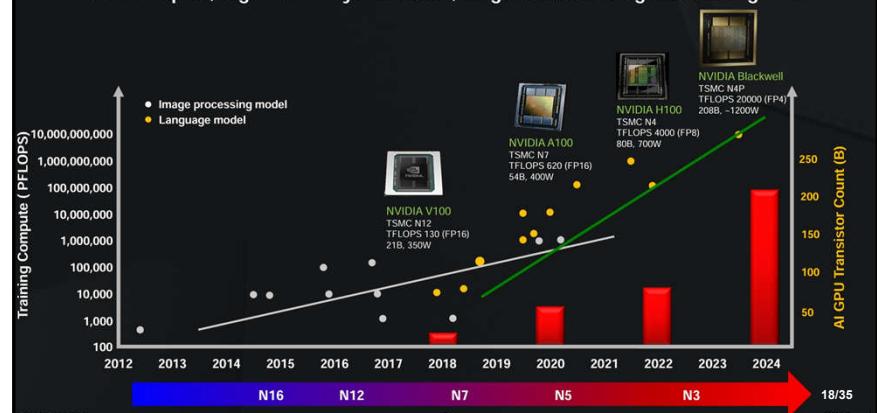


IC micrograph

15/35

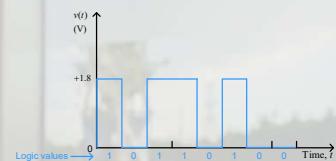
Device Feature Size



- Feature size reductions enabled by process innovations.
- Smaller features lead to more transistors per unit area and therefore higher density.
- 2020 5nm → 2022 3nm → **2025 2nm**

16/35

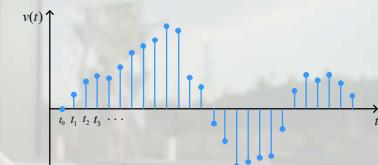
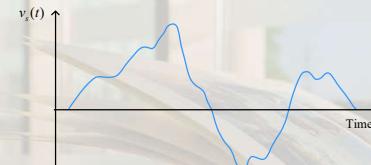

Moore's Law

- Number of transistors in an integrated circuit (IC) doubles about every two years.


Technology Advancement Ignites Explosive AI Growth

More Compute, Higher Memory Bandwidth, Larger Scale Heterogeneous Integration

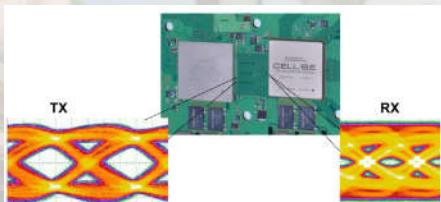
Signal Type



- Analog signals take on continuous values - typically current or voltage.

- Digital signals appear at discrete levels. Usually we use binary signals which utilize only two levels.
- One level is referred to as **logical 1** and **logical 0** is assigned to the other level.

Analog and Digital Signals

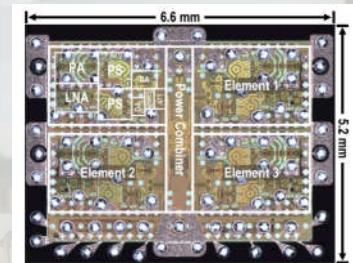
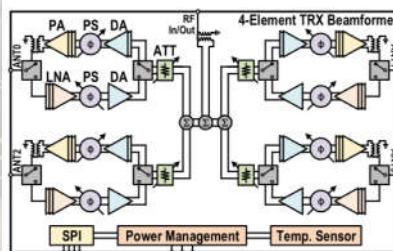
- Analog signals are continuous in time and voltage or current. (Charge can also be used as a signal conveyor.)



- After **digitization**, the continuous analog signal becomes a set of discrete values, typically separated by fixed time intervals.

Why Analog?

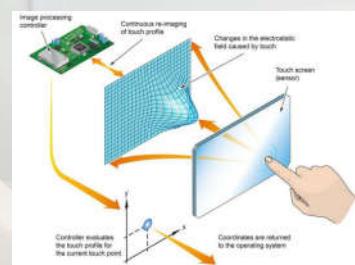
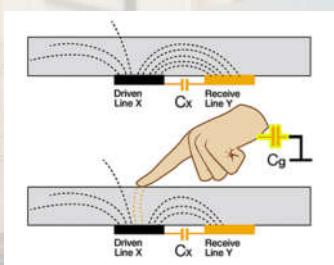
■ The real world is analog



- Analog is required to interface to just about anything
- Even to get two digital chips to talk to each other:

21/35

Another Example: RF Transceiver

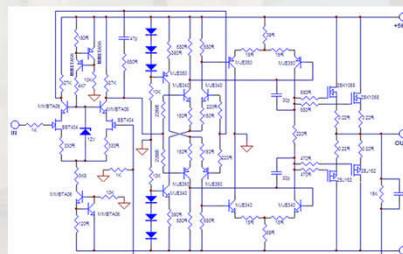
- Analog needs to provide **gain + filtering** with low noise and distortion

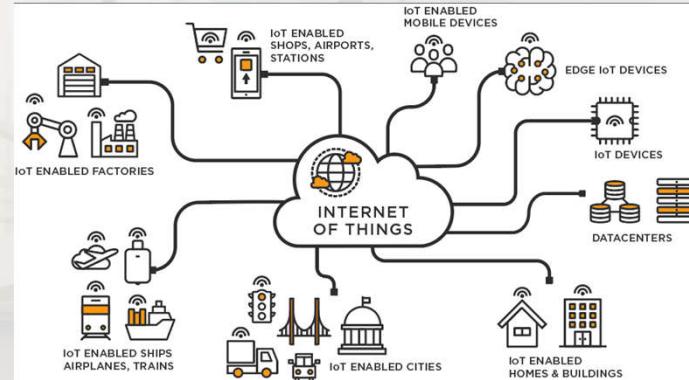
YI et al.: 24–29.5-GHz HIGHLY LINEAR PHASED-ARRAY TRX FRONT-END IN 65-nm CMOS, JSSC 2022.

22/35

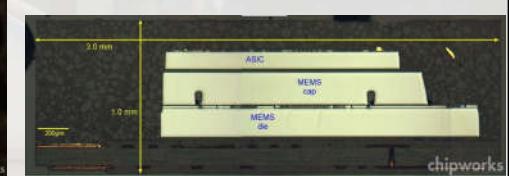
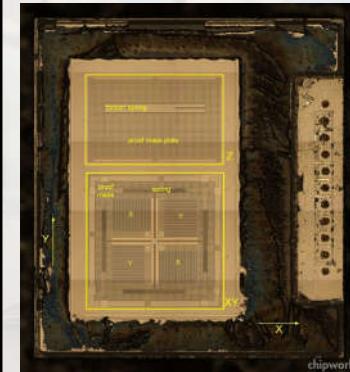
Capacitive Touch Sensors


- Similar to communications – analog needed for **signal conditioning**

23/35

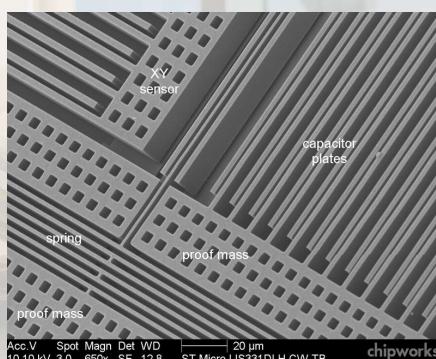

Power Amplifier

- A power amplifier (PA) converts a low-power signal to a higher power one.
 - Audio amplifiers, used to drive loudspeakers and headphones
 - RF power amplifiers, such as those used in the final stage of a transmitter.



24/35

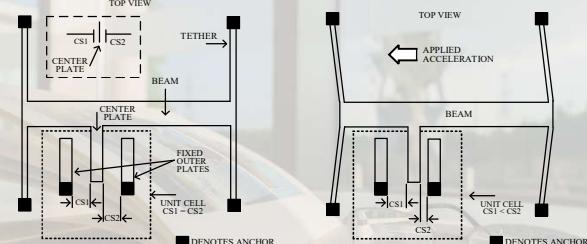
Internet of Things (IoT)

25/35

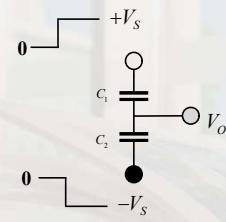

Accelerometer

- ASIC stacked on Microelectromechanical Systems (MEMS)
- Wafer level packaging (WLP) for MEMS
- 2 polysilicon layer surface micromachining process

26/35


Accelerometer

Acc. V Spot Magn. Det. WD 20 µm
10.10 kV 3.0 650x SE ST Micro LIS331DLH CW TB


27/35

Differential Capacitive Accelerometer

28/35

Differential Capacitive Sensing

$$C_1 = C \frac{x_0}{x_0 + \delta x} \quad C_2 = C \frac{x_0}{x_0 - \delta x}$$

For small displacement:

$$C_1 - C_2 = C \left(\frac{x_0}{x_0 + \delta x} - \frac{x_0}{x_0 - \delta x} \right) \\ = C \frac{-2x_0 \delta x}{x_0^2 - \delta x^2} \cong -C \frac{2}{x_0} \delta x$$

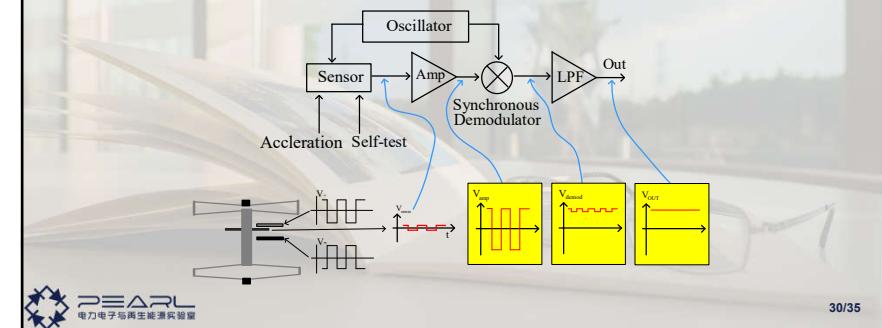
$$C_1 + C_2 \cong 2C$$

$$V_o \cong -\frac{\delta x}{x_0} V_s$$

Output voltage \propto displacement

$$V_o = -V_s + \frac{C_1}{C_1 + C_2} \cdot 2V_s = \frac{C_1 - C_2}{C_1 + C_2} V_s$$

29/35

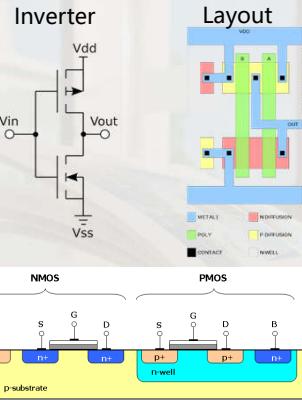

Analog is more challenging than digital

- Digital entails primarily ONE trade-off: speed and power
- Analog face **multiple trade-offs** including **speed, power, gain, precision**, etc.
- Analog is significantly more **sensitive** to noise, crosstalk, and other interferences than digital.
- **Second-order effects** in devices influence more to analog than digital.
- Almost **zero automation** in analog, meaning every device needs to be hand-crafted.

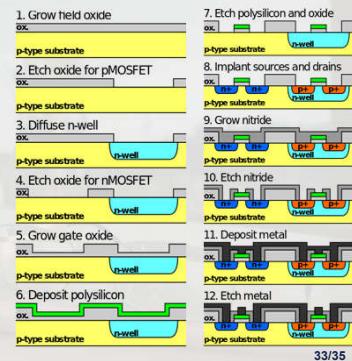
31/35

ADXL Block Diagram – Open Loop

- Minimum detectable capacitance change: 20 aF ($\text{aF} = 10^{-18}\text{F}$)
- Minimum detectable displacement: 0.02 nm (1/5 of hydrogen atom)

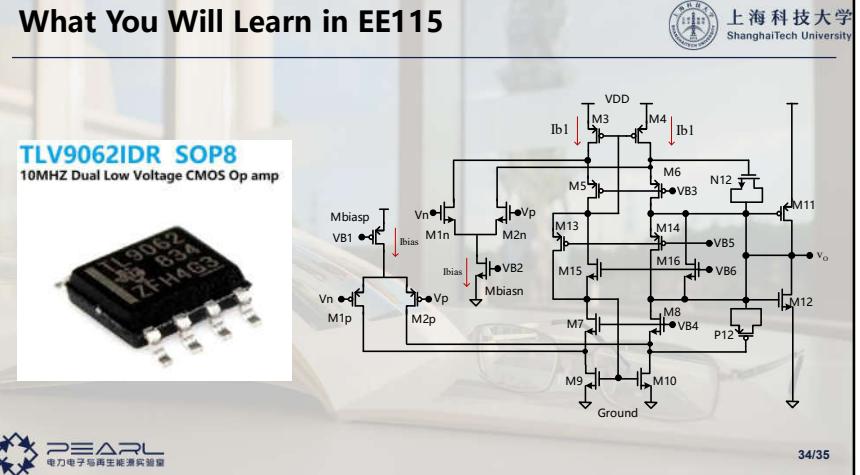

30/35

Why CMOS?


- Size of a transistor, gate length, has been **scaled down** from $25 \mu\text{m}$ in 1960 to **2 nm in 2025**.
- **MOSFETs** was patented in early 1930s far before the invention of **bipolar transistors**; technology becomes practical later in early 1960s. Yet, only n-type MOSFETs were produced. CMOS becomes available in mid-1960s.
- CMOS dissipates **power** only during switching and requires very few devices in contrast to bipolar.
- However, **MOSFETs** were slower and noisier than **bipolar**; i.e., g_m of MOSFETs $<< g_m$ of BJT
- **Scalability and speed** of CMOS has championed for past 30 years !

32/35

CMOS Circuit



Process Flow

33/35

What You Will Learn in EE115

34/35

ShanghaiTech Circuit Courses

- Electric Circuits
- **Analog Circuits**
- Digital Circuits
- Analog Integrated Circuits I
- Digital Integrated Circuits I
- Power Electronics
- Advanced Analog Integrated Circuits (graduate course)
- Advanced Digital Integrated Circuits (graduate course)
- Radio Frequency Integrate Circuits (graduate course)