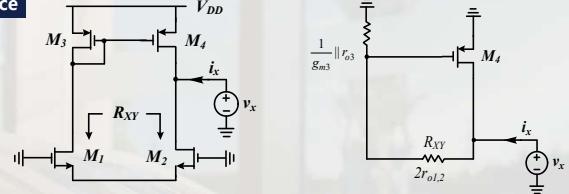

EE115 Analog Circuits Two Stage Amp & Freq Response Basis

Prof. Haoyu Wang
Office: SIST Bldg. 3-530
wanghy@shanghaitech.edu.cn

Outline


- Two-stage amplifier
- Reading: SEDTRA/SMITH book pages 640-644
- Frequency Response 1
- Reading: SEDTRA/SMITH book pages 673-680

Differential Pair w/ Current Mirror Load

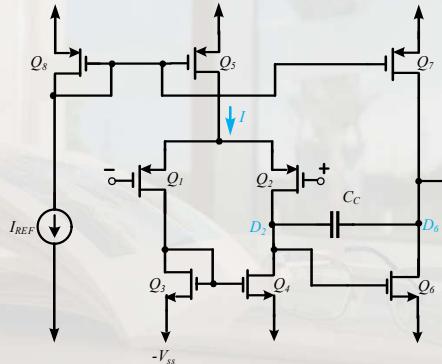
Output Resistance

When v_x is applied to measure R_o , v_{g4} varies!

For ac analysis, i is OPEN, any current flowing into M_1 most flow out of M_2 . Hence, M_1 and M_2 can be represented by $R_{XY} = 2r_{o1,2}$.

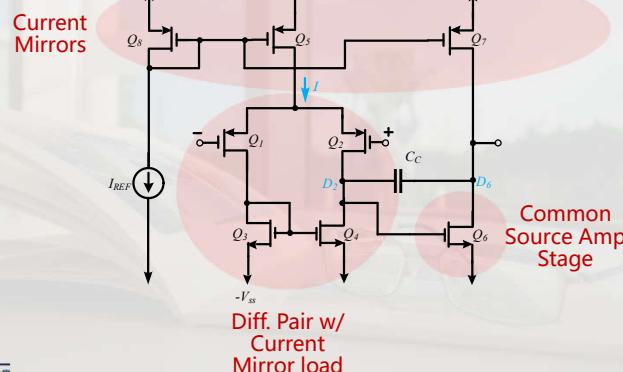
Thus, the current drawn from v_x by R_{XY} is mirrored by M_3 into M_4 with unity gain (Current doubled!).

$$i_x = 2 \frac{v_x}{2r_{o1,2} + \frac{1}{g_{m3}} \| r_{o3}} + \frac{v_x}{r_{o4}}$$


$$R_o = \frac{v_x}{i_x} = \frac{1}{\frac{1}{r_{o1,2} + \frac{1}{2g_{m3}} \| r_{o3}} + \frac{1}{r_{o4}}} \cong r_{o2} \| r_{o4}$$

5/16

电力电子与再生能源实验室


Two-Stage CMOS Op-Amp Circuit

6/16

Stages Scrutinize

7/16

电力电子与再生能源实验室

Voltage Gains

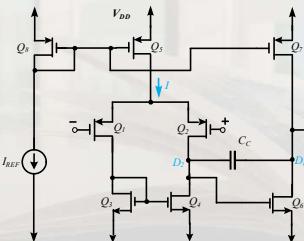
■ 1st stage (Q_1, Q_2): differential input, single-ended output:

$$A_1 = -g_{m1}(r_{o2} \| r_{o4})$$

■ 2nd stage (Q_6): common source amp. with current source load:

$$A_2 = -g_{m6}(r_{o6} \| r_{o7})$$

■ Total gain


$$A_o = A_1 A_2$$

8/16

Example: two stage op-amp

Transistor	Q ₁	Q ₂	Q ₃	Q ₄	Q ₅	Q ₆	Q ₇	Q ₈
W/L	10/0.4	10/0.4	2.5/0.4	2.5/0.4	20/0.4	5/0.4	20/0.4	20/0.4

- $I_{REF} = 100 \mu A$, $V_{tn} = 0.5 V$, $V_{tp} = -0.5 V$, $\mu_n C_{ox} = 400 \mu A/V^2$, $\mu_p C_{ox} = 100 \mu A/V^2$, $|V_A| = 5 V$ for all devices $V_{DD} = V_{SS} = 1 V$.
- Find I_D , $|V_{OV}|$, $|V_{GS}|$, g_m , r_o for all Q's
- Also find A_1 , A_2 , the dc open-loop voltage gain, input common mode range, output voltage range.

9/16

Example: solution

Transistor	Q ₁	Q ₂	Q ₃	Q ₄	Q ₅	Q ₆	Q ₇	Q ₈
W/L	10/0.4	10/0.4	2.5/0.4	2.5/0.4	20/0.4	5/0.4	20/0.4	20/0.4

Table Determine I_D via mirroring

	Q ₁	Q ₂	Q ₃	Q ₄	Q ₅	Q ₆	Q ₇	Q ₈
$I_D(\mu A)$	50	50	50	50	100	100	100	100
$ V_{GS}(V)$	0.7	0.7	0.7	0.7	0.7	0.7	0.7	0.7
$ V_{DS}(V)$	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2
$g_m(mA/V)$	0.5	0.5	0.5	0.5	1	1	1	1
$r_o(k\Omega)$	100	100	100	100	50	50	50	50

$$I_D = \frac{1}{2} (\mu C_{ox}) \left(\frac{W}{L} \right) V_{ov}^2$$

$$g_m = \frac{2I_D}{V_{ov}}$$

$$r_o = |V_A| / I_D$$

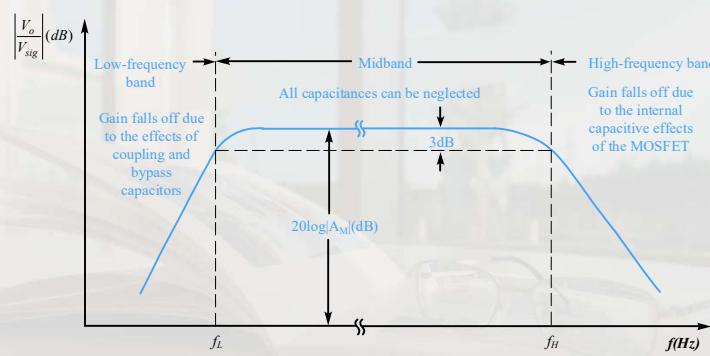
$$A_1 = -g_{m1}(r_{o2} || r_{o4}) = -0.5(100 || 100) = -25V/V$$

$$A_2 = -g_{m2}(r_{o6} || r_{o7}) = -1(50 || 50) = -25V/V$$

$$A_o = A_1 A_2 = 25 \times 25 = 625V/V$$

$$20 \log 625 = 56dB$$

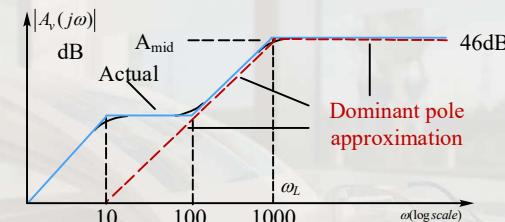
$$V_{ICMmin} = -1.0 + 0.7 + 0.2 - 0.7 = -0.8V$$


$$V_{ICMmax} = 0.8 - 0.7 = +0.1V$$

$$V_{omax} = 1.0 - 0.2 = 0.8V$$

$$V_{omin} = -1.0 + 0.2 = -0.8V$$

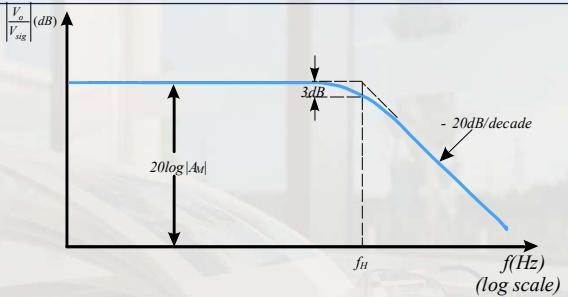
10/16


Typical Frequency Response of Discrete MOS Amplifiers

11/16

Low Frequency Dominant Pole Approximation

- A **Dominant Pole** exists if one of the low frequency poles is much larger than the others.



➤ In the graph above, $\omega = 1000$ rad/sec is a dominant pole.

➤ All other poles and zeros are at low enough frequencies that they do not affect the lower cutoff frequency ω_L .

12/16

Frequency Response of Direct-Coupled (IC) Amp

- Gain does not fall off at low frequencies
- Midband gain A_m extends down to **zero frequency**

13/16

Cross Section of MOSFET Showing Internal Cap.

- Gate/Source capacitance:

$$C_{gs} = \frac{2}{3} W L C_{ox} + C_{ov}$$

where

$$C_{ox} = \epsilon_{ox} / t_{ox} [F/cm^2]$$

➢ W: Transistor width

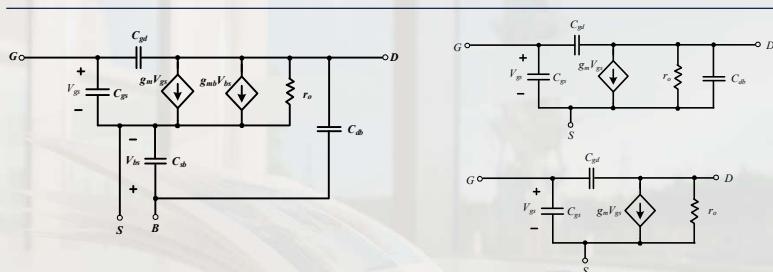
➢ L: Gate Length

$$C_{ov} = W L_{ov} C_{ox}$$

➢ L_{ov} : overlap between Gate/source or gate/drain, typically 0.05-0.1L

- Gate/Drain capacitance:

$$C_{gd} = C_{ov}$$

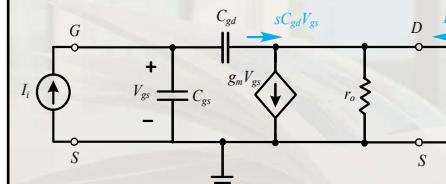

14/16

- MOSFET has several internal capacitances, which take time to charge/discharge, limiting the **transistor speed**.

MOSFET High-f Equivalent-Circuit Model

MOSFET High-f Equivalent-Circuit Model

- Source is connected to the body (no **body effect**)
- Capacitance between drain and body **C_{db}** neglected


15/16

Unity-Gain Frequency, f_T

■ f_T : frequency at which short-circuit current gain = 1

➢ FoM for transistor speed

➢ Drain is grounded (short-circuit load)

$$I_o = g_m V_{gs} - s C_{gd} V_{gs} = (g_m - s C_{gd}) V_{gs}$$

$$V_{gs} = \frac{I_i}{s(C_{gs} + C_{gd})}$$

$$\text{Combine: } \frac{I_o}{I_i} = \frac{g_m - s C_{gd}}{s(C_{gs} + C_{gd})}$$

$$\left| \frac{I_o}{I_i} \right| (s = j \omega_T) \cong \frac{g_m}{\omega_T (C_{gs} + C_{gd})} = 1$$

$$\text{Unity gain freq.: } \omega_T = \frac{g_m}{(C_{gs} + C_{gd})}$$

$$f_T = \frac{g_m}{2\pi(C_{gs} + C_{gd})}$$

As gate length reduces in advanced technology, C_{gs} reduces and f_T increases

16/16