

EE115 Analog Circuits Feedback 1

Prof. Haoyu Wang
Office: SIST Bldg. 3-530
wanghy@shanghaitech.edu.cn

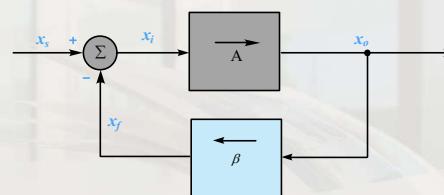
Feedback

- Feedback is widely used in analog circuits.
- **Negative feedback** allows **high precision** signal processing
 - Desensitize the gain
 - Reduce nonlinear distortion
 - Extend the bandwidth of the amplifier
 - Control the input and output resistances
 - Raise or lower R_{in} and R_o by properly design the feedback topology.

Outline

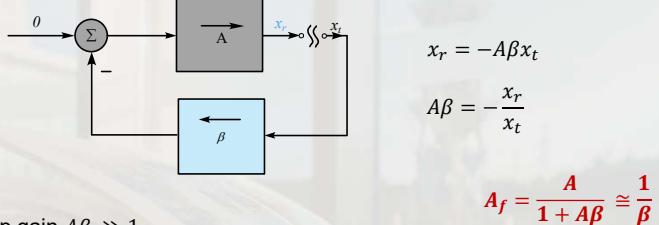
- Feedback 1
 - General Feedback Structure
 - Some Properties of Negative Feedback
 - Feedback Voltage Amplifier
- Reading: SEDTRA/SMITH book pages 782-797

General Feedback Structure



$$\begin{aligned}
 A &: \text{open loop gain} & x_o &= Ax_i \\
 & & x_o &= Ax_i \\
 \beta &: \text{feedback factor} & x_f &= \beta x_o \\
 & & x_i &= x_s - x_f = x_s - A\beta x_i \\
 & & x_s &= (1 + A\beta)x_i \\
 A_f &: \text{closed loop gain} & A_f &\equiv \frac{x_o}{x_s} = \frac{A}{1 + A\beta} \\
 & & A\beta &\text{: loop gain. If } A\beta \gg 1, \\
 & & A_f &\cong \frac{1}{\beta}
 \end{aligned}$$

Loop Gain



- Loop gain $A\beta \gg 1$,
- The sign of $A\beta$ determines the polarity of the feedback.
- The magnitude of $A\beta$ determines how close the closed-loop gain A_f is to the ideal value of $1/\beta$.
- The magnitude of $A\beta$ determines the amount of feedback ($1 + A\beta$), the magnitude of the various improvements in amplifier performance.

5/13

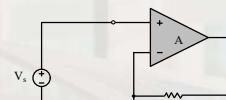
$$A\beta = -\frac{V_x}{V_o}$$

$$A_f = \frac{A}{1 + A\beta} \approx \frac{1}{\beta}$$

Example: noninverting op-amp with feedback

- Assume that the op amp has infinite input resistance and zero output resistance. Find an expression for the feedback factor (β).

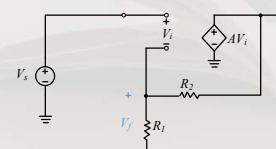
- Find β and R_2/R_1 to obtain an ideal closed-loop gain of $10V/V$.



Solution:

$$\beta \equiv \frac{V_f}{V_o} = \frac{R_1}{R_1 + R_2}$$

$$A_f|_{ideal} = \frac{1}{\beta} = 1 + \frac{R_2}{R_1}$$



$$(b)$$

$$For A_f|_{ideal} = 10V/V$$

$$\beta = \frac{1}{A_f|_{ideal}} = 0.1V/V$$

$$10 = 1 + \frac{R_2}{R_1} \Rightarrow \frac{R_2}{R_1} = 9$$

6/13

Example

- If the open-loop gain $A = 10^4V/V$, for the design in (b), $\beta=0.1$, find the loop gain, the amount of feedback and the actual value of A_f . By what percentage does A_f deviate from the ideal value?
- To what values must β and R_2/R_1 be changed to obtain a closed-loop gain of exactly $10V/V$?

Solution: (c)

$$A\beta = 10^4 \times 0.1 = 1000$$

$$1 + A\beta = 1001 \Rightarrow 60dB$$

$$A_f = \frac{A}{1 + A\beta} = \frac{10^4}{1001} = 9.990V/V$$

0.1% below the ideal value of $10V/V$

Solution: (d)

$$(d) A_f = \frac{A}{1 + A\beta}$$

$$10 = \frac{10^4}{1 + 10^4 \times \beta} \Rightarrow \beta = 0.0999 \times 10^4$$

$$\frac{R_1}{R_1 + R_2} = 0.0999 \Rightarrow \frac{R_2}{R_1} = 9.01$$

7/13

Example

- For the modified design in (d), $\beta=0.0999$, let $V_s = 1V$. Find the values of V_o , V_f and V_i .
- If for the design in (d) the open-loop gain decreases by 20%, what is the corresponding decrease in A_f ?

Solution: (e)

$$For V_s = 1V$$

$$V_o = A_f V_s = 10 \times 1 = 10V$$

$$V_f = \beta V_o = 0.0999 \times 10 = 0.999V$$

$$V_i = \frac{V_o}{A} = \frac{10}{10^4} = 0.001V$$

(f) If A decreases by 20%

$$A = 0.8 \times 10^4V/V$$

$$A_f = \frac{0.8 \times 10^4}{1 + 0.8 \times 10^4 \times 0.0999} = 9.9975V/V$$

It decreases by 0.025%, much less than the % change in A (20%)

8/13

Solution: (e)

Solution: (f)

Solution: (g)

Feedback: Gain Desensitivity

- The percentage change in A_f (due to variations in some circuit parameter) is **smaller** than the percentage change in A by a factor equal to the **amount of feedback**.
- For this reason, the **amount of feedback, $1+A\beta$** , is also known as the **desensitivity factor**.

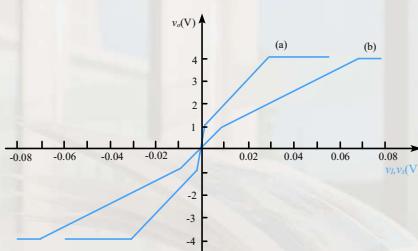
$$A_f = \frac{A}{1 + A\beta}$$

$$dA_f = \frac{dA}{(1 + A\beta)^2}$$

$$\frac{dA_f}{A_f} = \frac{1}{1 + A\beta} \cdot \frac{dA}{A}$$

9/13

Feedback: Reduction in Nonlinear Distortion



(a): open loop, piecewise linear, 1000 to 100.
 (b): closed loop with negative feedback, $\beta=0.01$

$$A_{f1} = \frac{1000}{1 + 1000 \times 0.01} = 90.9$$

$$A_{f2} = \frac{100}{1 + 100 \times 0.01} = 50$$

Amplifier transfer characteristic
can be considerably linearized
through negative feedback.

Fig. (a) v_o versus v_i without feedback.
 (b) v_o versus v_i with negative feedback ($\beta=0.01$).

11/13

Feedback: Bandwidth Extension

$$A(s) = \frac{A_M}{1 + s/\omega_H}$$

$$A_f(s) = \frac{A(s)}{1 + \beta A(s)}$$

$$A_f(s) = \frac{A_M}{1 + \beta A_M + s/\omega_H} = \frac{A_M/(1+A_M\beta)}{1+s/[\omega_H(1+A_M\beta)]}$$

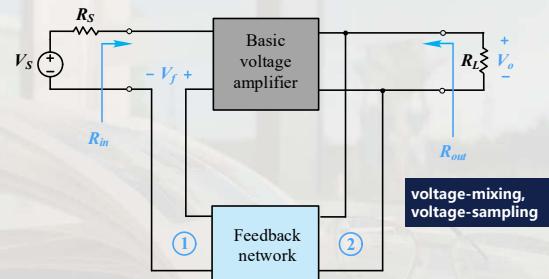
$$\omega_{Hf} = \omega_H(1 + A_M\beta)$$

Gain-bandwidth product unchanged.

10/13

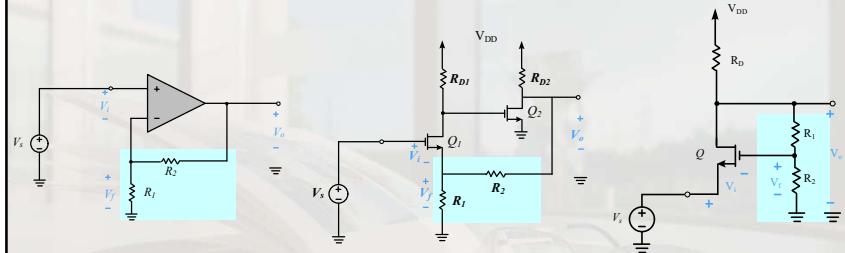
Feedback Voltage Amplifier

■ Series-Shunt Feedback Topology



12/13

Examples of Series-Shunt Feedback Amp.



V_s increases, V_o increases and V_f increases: negative feedback