

EE115 Analog Circuits Transistor Amplifier 2

Prof. Haoyu Wang
Office: SIST Bldg. 3-530
wanghy@shanghaitech.edu.cn

MOSFET Small Signal Model

■ In small signal AC analysis, **DC voltage source = short circuit**

$$A_v = \frac{v_{ds}}{v_{gs}} = -g_m (R_D || r_o)$$

■ The equivalent circuit is valid for both NMOS and PMOS

■ In **PMOS**, use **absolute sign** for all parameters: $|V_{GS}|$, $|V_t|$, $|V_{ov}|$, $|V_A|$, and replace k_n with k_p

Outline

- Transistor amplifier 2
 - Review: Small Signal Model
 - Basic Configurations
- Reading: SEDTRA/SMITH book pages 422-447

Output Resistance and Transconductance

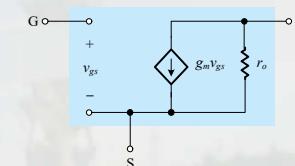
Output resistance at drain:

$$r_o = \frac{|V_A|}{I_D}$$

Transconductance:

$$i_d = I_D + i_d = \frac{1}{2} k_n (V_{GS} + v_{gs} - V_{tn})^2 = \frac{1}{2} k_n (V_{GS} - V_{tn})^2 + k_n (V_{GS} - V_{tn}) v_{gs} + \frac{1}{2} k_n v_{gs}^2$$

$$i_d = k_n (V_{GS} - V_{tn}) v_{gs}$$


Or

$$g_m \equiv \left. \frac{\partial i_d}{\partial v_{gs}} \right|_{v_{gs}=V_{GS}}$$

$$g_m = \frac{i_d}{v_{gs}} = k_n (V_{GS} - V_{tn}) = k_n V_{ov}$$

$$V_{ov} = \sqrt{2I_D/k_n} = \sqrt{2I_D/(k'_n W/L)}$$

$$g_m = \sqrt{2k_n} \sqrt{W/L} \sqrt{I_D}$$

Or

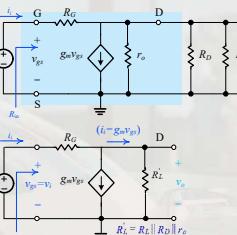
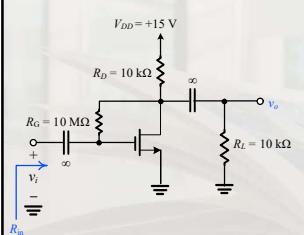
$$g_m = k_n V_{ov} = k'_n (W/L) V_{ov}$$

Or

$$g_m = \frac{2I_D}{V_{GS} - V_{tn}} = \frac{2I_D}{V_{ov}} = \frac{I_D}{V_{ov}/2}$$

Three **design parameters**: W/L, V_{ov}, and I_D.

Systematic Procedure for Transistor Amp Analysis

- 1. Perform **DC analysis** (ignore small signal source)
- 2. Calculate small-signal parameters (g_m , r_o etc)
- 3. Generate AC small-signal equivalent circuit
 - Replace **DC voltage source** by **short** circuit
 - Replace **DC current source** by **open** circuit
 - Replace transistor by **hybrid- π model (or T model)**
- 4. Perform **circuit analysis** to determine voltage gain or other amplifier performance parameters

Continued 1

(2) Solve AC Small Signal Circuit

Solution: $g_m = k_n V_{OV} = 0.25 \times 2.9 = 0.725 \text{ mA/V}$

$$r_o = \frac{V_A}{I_D} = \frac{50}{1.06} = 47 \text{ k}\Omega$$

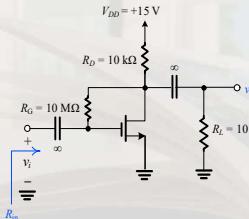
$$R_L' = R_L \parallel R_D \parallel r_o = 10 \parallel 10 \parallel 47 = 4.52 \text{ k}\Omega$$

$$v_o = (i_t - g_m v_{gs}) R_L'$$

$$i_t = \frac{v_{gs} - v_o}{R_G}$$

$$A_v = -g_m R_L \frac{1 - (1/g_m R_G)}{1 + (R_L'/R_G)}$$

$$A_v \cong -g_m R_L$$


$$A_v \cong -3.3 \text{ V/V}$$

MOSFET Amplifier Example

- Given: The MOSFET has $V_t = 1.5 \text{ V}$, $k_n = 0.25 \text{ mA/V}$ and $V_A = 50 \text{ V}$. Find voltage gain for the amplifier.

(1) Solve DC Bias Point

$$V_{GS} = V_{DS} = V_{DD} - R_D I_D$$

$$I_D = \frac{1}{2} k_n (V_{GS} - V_t)^2$$

$$I_D = 1.06 \text{ mA}$$

$$V_{GS} = V_{DS} = 4.4 \text{ V}$$

$$V_{OV} = 4.4 - 1.5 = 2.9 \text{ V}$$

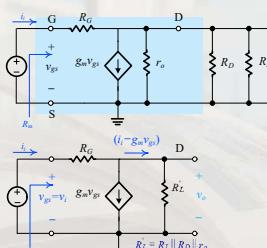

Solution:

Fig. (a) amplifier circuit; (b) circuit for determining the dc operating point;

Continued 2

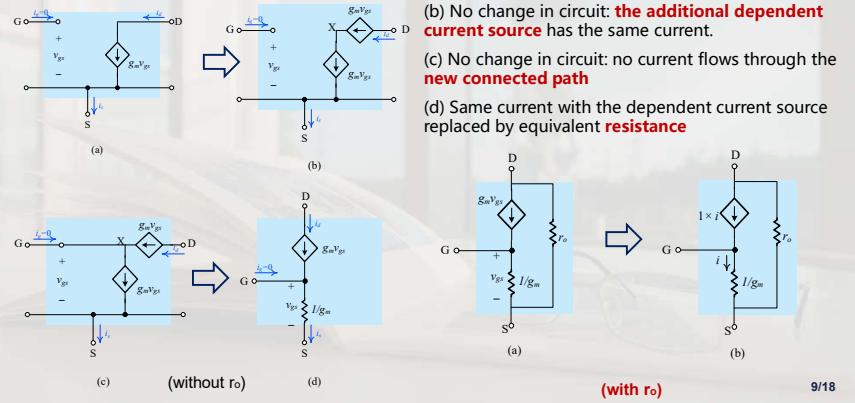
(3) Additional Parameters of Interest

Solution:

$$R_{in} = \frac{R_G}{1 + g_m R_L}$$

$$R_{in} = \frac{10 \text{ M}\Omega}{1 + 3.3} = 2.33 \text{ M}\Omega$$

$$v_{DS} \geq v_{GS} - V_t$$


$$v_{DSmin} \geq v_{GSmax} - V_t$$

$$V_{DS} - |A_v| \hat{v}_i = V_{GS} + \hat{v}_i - V_t$$

$$\hat{v}_i \leq \frac{V_t}{|A_v| + 1}$$

$$\hat{v}_i \leq \frac{1.5}{3.3 + 1} = 0.35 \text{ V}$$

From π Model to T Model

9/18

Two-Port Model of Amplifiers

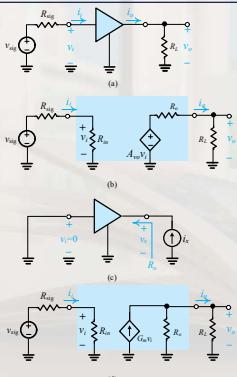
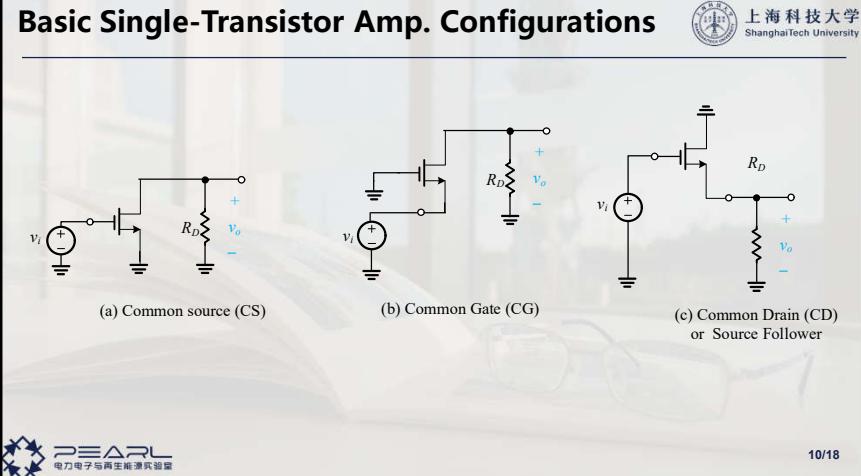


Fig. Characterization of the amplifier as a functional block

$$G_v = \frac{R_{in}}{R_{sig} + R_{in}} A_{vo} \frac{R_L}{R_o + R_L}$$


- In addition to gain, it's important to have proper **input and output resistances**.
- e.g. Procedure to find R_o :
 - Ground input, remove R_{sig}
 - Apply a test current source at output (conceptually, not experimentally),
 - Find voltage at output terminal.

$$R_o = \frac{V_o}{I_x}$$

Question: How to find R_{in} ?

11/18

Basic Single-Transistor Amp. Configurations

10/18

Common-Source (CS) Amplifier

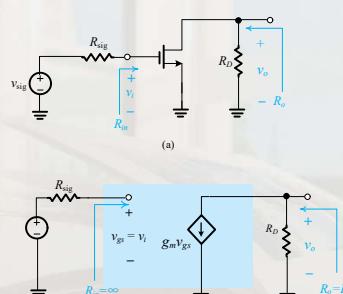


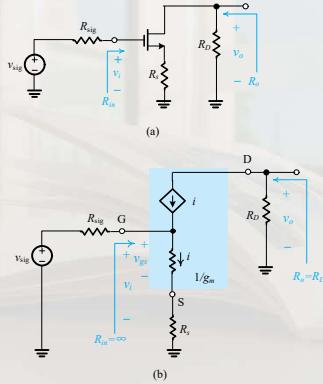
Figure 7.36

- Previously, using MOSFET equation, we derived analytically :

$$A_V = -k_n V_{OV} R_D$$

- Using hybrid- π model, it is almost trivial to solve: $A_V = -g_m R_D$

- With load resistance, R_L :
Since R_L is in parallel with R_D


$$G_V = -g_m (R_D || R_L)$$

$$R_{in} = \infty$$

$$R_o = R_D$$

12/18

CS with Source Resistance (Source Degeneration)

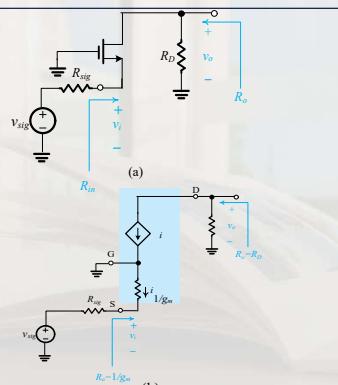
- You can analyze the circuit using hybrid- π model. (Try it !)
- However, whenever **there is a resistor connected to source**, it is much easier to use the **T-model**

13/18

Continued

Note

$$A_v = -\frac{R_D}{\frac{1}{g_m} + R_s} = -\frac{\text{Total resistance in Drain}}{\text{Total resistance in Source}}$$


- \$R_s\$ provides negative feedback**, which
 - Stabilize drain current
 - Increase linearity by keeping \$v_{gs}\$ small
 - Increase usable bandwidth
- \$R_s\$ source-degeneration resistance**

$$v_{gs} = v_i \frac{1/g_m}{1/g_m + R_s} = \frac{v_i}{1 + g_m R_s}$$

Fig. CS amplifier with a source resistance \$R_s\$.

14/18

Common-Gate (CG) Amplifier

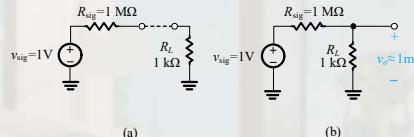
- \$R_{sig}\$ connected to source
→ Use **T-model**

$$R_{in} = \frac{1}{g_m}$$

$$A_{vo} \equiv \frac{v_o}{v_i} = g_m R_D$$

$$R_o = R_D$$

$$G_V = \frac{1/g_m}{R_{sig} + 1/g_m} [g_m (R_D || R_L)]$$


$$G_V = \frac{R_D || R_L}{R_{sig} + 1/g_m}$$

15/18

Fig. (a) CG amplifier with bias arrangement omitted. (b) Equivalent circuit of the CG amplifier with the MOSFET replaced with its T model.

Need for Voltage Buffers

- Driving low impedance load **directly**

- Driving low impedance load with **unit-gain buffer**

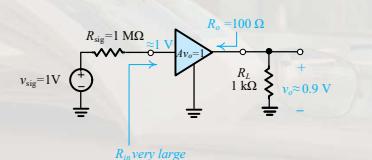
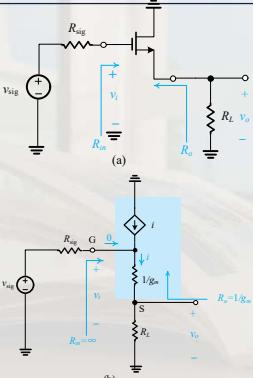



Fig. Illustrating the need for a unity-gain voltage buffer amplifier

16/18

Source Follower (Common-Drain Amplifier)

■ R_L connected to source
→ Use **T-model**

$$R_{in} = \infty$$

$$A_v \equiv \frac{v_o}{v_i} = \frac{R_L}{R_L + 1/g_m}$$

If $R_L \gg 1/g_m, A_{vo} \approx 1$

$$R_o = 1/g_m$$

$$G_v = A_v = \frac{R_L}{R_L + 1/g_m}$$

(b)

Fig. (a) CD amplifier or source follower with the bias circuit omitted. (b)
Equivalent circuit of the source follower obtained by replacing the
MOSFET with its T model.

Comparison of Different Amp. Configurations

■ **CS** provides the **bulk** of the gain

■ **CD** used as **voltage buffer** in output stage